ﻻ يوجد ملخص باللغة العربية
We developed a novel approach based on a generalization of factorization and nuclear spectral functions, allowing for a consistent treatment of the amplitudes involving one- and two-nucleon currents, whose contribution to the nuclear electromagnetic response in the transverse channel is known to be significant. We report the results of calculations of the inclusive electron-carbon cross section, showing that the inclusion of processes involving two-nucleon currents appreciably improves the agreement between theory and data in the dip region, between the quasi elastic and $Delta$-production peaks. The implications for the analysis of neutrino-nucleus cross sections are discussed.
We illustrate the connection between electron and neutrino scattering off nuclei and show how the former process can be used to constrain the description of the latter. After reviewing some of the nuclear models commonly used to study lepton-nucleus
We compute inclusive electron-nucleus cross sections using ab initio spectral functions of $^4$He and $^{16}$O obtained within the Self Consistent Greens Function approach. The formalism adopted is based on the factorization of the spectral function
The distorted spin-dependent spectral function of a nucleon inside an A=3 nucleus is introduced as a novel tool for investigating the polarized electron scattering off polarized $^3$He in semi-inclusive DIS regime (SiDIS), going beyond the standard p
Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial for interpretating neutrino- and electron-scattering data. In the large momentum-transfer regime, the nucleon-density response func
We present a model for electron- and neutrino-scattering off nucleons and nuclei focussing on the quasielastic and resonance region. The lepton-nucleon reaction is described within a relativistic formalism that includes, besides quasielastic scatteri