ترغب بنشر مسار تعليمي؟ اضغط هنا

Cooling of Compact Stars with Color Superconducting Quark Matter

150   0   0.0 ( 0 )
 نشر من قبل Tsuneo Noda
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show a scenario for the cooling of compact stars considering the central source of Cassiopeia A (Cas A). The Cas A observation shows that the central source is a compact star with high effective temperature, and it is consistent with the cooling without exotic phases. The Cas A observation also gives the mass range of $M geq 1.5 M_odot$. It may conflict with the current cooling scenarios of compact stars that heavy stars show rapid cooling. We include the effect of the color superconducting (CSC) quark matter phase on the thermal evolution of compact stars. We assume the gap energy of CSC quark phase is large ($Delta gtrsim mathrm{10 MeV}$), and we simulate the cooling of compact stars. We present cooling curves obtained from the evolutionary calculations of compact stars: while heavier stars cool slowly, and lighter ones indicate the opposite tendency.

قيم البحث

اقرأ أيضاً

Recent indications for high neutron star masses (M sim 2 M_sun) and large radii (R > 12 km) could rule out soft equations of state and have provoked a debate whether the occurence of quark matter in compact stars can be excluded as well. We show that modern quantum field theoretical approaches to quark matter including color superconductivity and a vector meanfield allow a microscopic description of hybrid stars which fulfill the new, strong constraints. For these objects color superconductivity turns out to be an essential ingredient for a successful description of the cooling phenomenology in accordance with recently developed tests. We discuss the energy release in the neutrino untrapping transition as a new aspect of the problem that hybrid stars masquerade themselves as neutron stars. Quark matter searches in future generations of low-temperature/high-density nucleus-nucleus collision experiments such as low-energy RHIC and CBM @ FAIR might face the same problem of an almost crossover behavior of the deconfinement transition. Therefore, diagnostic tools shall be derived from effects of color superconductivity.
The search for the true ground state of the dense matter remains open since Bodmer, Terazawa and other raised the possibility of stable quarks, boosted by Wittens $strange$ $matter$ hypothesis in 1984. Within this proposal, the strange matter is assu med to be composed of $strange$ quarks in addition to the usual $up$s and $down$s, having an energy per baryon lower than the strangeless counterpart, and even lower than that of nuclear matter. In this sense, neutron stars should actually be strange stars. Later work showed that a paired, symmetric in flavor, color-flavor locked (CFL) state would be preferred to the one without any pairing for a wide range of the parameters (gap $Delta$, strange quark mass $m_s$, and bag constant B). We use an approximate, yet very accurate, CFL equation of state (EoS) that generalizes the MIT bag model to obtain two families of exact solutions for the static Einstein field equations constructing families anisotropic compact relativistic objects. In this fashion, we provide exact useful solutions directly connected with microphysics.
We construct the equation of state for high density neutron star matter at zero temperature using the two-flavor Nambu--Jona-Lasinio (NJL) model as an effective theory of QCD. We build nuclear matter, quark matter, and the mixed phases from the same NJL Lagrangian, which has been used to model free and in-medium hadrons as well as nuclear systems. A focus here is to determine if the same coupling constants in the scalar diquark and vector meson channels, which give a good description of nucleon structure and nuclear matter, can also be used for the color superconducting high density quark matter phase. We find that this is possible for the scalar diquark (pairing) interaction, but the vector meson interaction has to be reduced so that superconducting quark matter becomes the stable phase at high densities. We compare our equation of state with recent phenomenological parametrizations based on generic stability conditions for neutron stars. We find that the maximum mass of a neutron star, with a color superconducting quark matter core, exceeds $2.01 pm 0.04,M_odot$ which is the value of the recently observed massive neutron star PSR J0348+0432. The mass-radius relation is also consistent with gravitational wave observations (GW170817).
Some time ago we have derived from the QCD Lagrangian an equation of state (EOS) for the cold quark matter, which can be considered an improved version of the MIT bag model EOS. Compared to the latter, our equation of state reaches higher values of t he pressure at comparable baryon densities. This feature is due to perturbative corrections and also to non-perturbative effects. Later we applied this EOS to the study of compact stars, discussing the absolute stability of quark matter and computing the mass-radius relation for self-bound (strange) stars. We found maximum masses of the sequences with more than two solar masses, in agreement with the recent experimental observations. In the present work we include the magnetic field in the equation of state and study how it changes the stability conditions and the mass-radius curves.
A compact star with superconducting quark core, the hadron crust and the mixed phase between the two is considered. The quark meson coupling model for hadron matter and the color flavor locked quark model for quark matter is used in order to construc t the equation of state for the compact star. The effect of pairing of quarks in the color flavor locked phase and the mixed phase on the mass, radius, and period of the rotating star is studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا