ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive Neutron Stars with a Color Superconducting Quark Matter Core

203   0   0.0 ( 0 )
 نشر من قبل Wolfgang Bentz
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct the equation of state for high density neutron star matter at zero temperature using the two-flavor Nambu--Jona-Lasinio (NJL) model as an effective theory of QCD. We build nuclear matter, quark matter, and the mixed phases from the same NJL Lagrangian, which has been used to model free and in-medium hadrons as well as nuclear systems. A focus here is to determine if the same coupling constants in the scalar diquark and vector meson channels, which give a good description of nucleon structure and nuclear matter, can also be used for the color superconducting high density quark matter phase. We find that this is possible for the scalar diquark (pairing) interaction, but the vector meson interaction has to be reduced so that superconducting quark matter becomes the stable phase at high densities. We compare our equation of state with recent phenomenological parametrizations based on generic stability conditions for neutron stars. We find that the maximum mass of a neutron star, with a color superconducting quark matter core, exceeds $2.01 pm 0.04,M_odot$ which is the value of the recently observed massive neutron star PSR J0348+0432. The mass-radius relation is also consistent with gravitational wave observations (GW170817).

قيم البحث

اقرأ أيضاً

Recent indications for high neutron star masses (M sim 2 M_sun) and large radii (R > 12 km) could rule out soft equations of state and have provoked a debate whether the occurence of quark matter in compact stars can be excluded as well. We show that modern quantum field theoretical approaches to quark matter including color superconductivity and a vector meanfield allow a microscopic description of hybrid stars which fulfill the new, strong constraints. For these objects color superconductivity turns out to be an essential ingredient for a successful description of the cooling phenomenology in accordance with recently developed tests. We discuss the energy release in the neutrino untrapping transition as a new aspect of the problem that hybrid stars masquerade themselves as neutron stars. Quark matter searches in future generations of low-temperature/high-density nucleus-nucleus collision experiments such as low-energy RHIC and CBM @ FAIR might face the same problem of an almost crossover behavior of the deconfinement transition. Therefore, diagnostic tools shall be derived from effects of color superconductivity.
The hadron-quark phase transition in the core of massive neutron stars is studied with a newly constructed two-phase model. For nuclear matter, a nonlinear Walecka type model with general nucleon-meson and meson-meson couplings, recently calibrated b y Steiner, Hemper and Fischer, is taken. For quark matter, a modified Polyakov-Nambu--Jona-Lasinio (mPNJL) model, which gives consistent results with lattice QCD data, is used. Most importantly, we introduce an isoscalar-vector interaction in the description of quark matter, and we study its influence on the hadron-quark phase transition in the interior of massive neutron stars. With the constraints of neutron star observations, our calculation shows that the isoscalar-vector interaction between quarks is indispensable if massive hybrids star exist in the universe, and its strength determines the onset density of quark matter, as well as the mass-radius relations of hybrid stars. Furthermore, as a connection with heavy-ion-collision experiments we give some discussions about the strength of isoscalar-vector interaction and its effect on the signals of hadron-quark phase transition in heavy-ion collisions, in the energy range of the NICA at JINR-Dubna and FAIR at GSI-Darmstadt facilities.
We construct the nuclear and quark matter equations of state at zero temperature in an effective quark theory (the Nambu-Jona-Lasinio model), and discuss the phase transition between them. The nuclear matter equation of state is based on the quark-di quark description of the single nucleon, while the quark matter equation of state includes the effects of scalar diquark condensation (color superconductivity). The effect of diquark condensation on the phase transition is discussed in detail.
We show a scenario for the cooling of compact stars considering the central source of Cassiopeia A (Cas A). The Cas A observation shows that the central source is a compact star with high effective temperature, and it is consistent with the cooling w ithout exotic phases. The Cas A observation also gives the mass range of $M geq 1.5 M_odot$. It may conflict with the current cooling scenarios of compact stars that heavy stars show rapid cooling. We include the effect of the color superconducting (CSC) quark matter phase on the thermal evolution of compact stars. We assume the gap energy of CSC quark phase is large ($Delta gtrsim mathrm{10 MeV}$), and we simulate the cooling of compact stars. We present cooling curves obtained from the evolutionary calculations of compact stars: while heavier stars cool slowly, and lighter ones indicate the opposite tendency.
When hadron-quark continuity is formulated in terms of a topology change at a density higher than twice the nuclear matter densiy $n_0$ the core of massive compact stars can be described in terms of quasiparticles of fractional baryon charges, behavi ng neither like pure baryons nor deconfined quarks. Hidden symmetries, both local gauge and pseudo-conformal (or broken scale), emerge and give rise to the long-standing quenched $g_A$ in nuclear Gamow-Teller transitions at $sim n_0$ and to the pseudo-conformal sound velocity $v_{pcs}^2/c^2approx 1/3$ at $gsim 3n_0$. These properties are confronted with the recent observations in superallowed Gamow-Teller transitions and in astrophysical observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا