ﻻ يوجد ملخص باللغة العربية
The search for metallic boron allotropes has attracted great attention in the past decades and recent theoretical works predict the existence of metallicity in monolayer boron. Here, we synthesize the b{eta}12-sheet monolayer boron on a Ag(111) surface and confirm the presence of metallic boron-derived bands using angle-resolved photoemission spectroscopy. The Fermi surface is composed of one electron pocket at the S point and a pair of hole pockets near the X point, which is supported by the first-principles calculations. The metallic boron allotrope in b{eta}12 sheet opens the way to novel physics and chemistry in material science.
Silicene, analogous to graphene, is a one-atom-thick two-dimensional crystal of silicon which is expected to share many of the remarkable properties of graphene. The buckled honeycomb structure of silicene, along with its enhanced spin-orbit coupling
We report the first observation of substitutional silicon atoms in single-layer hexagonal boron nitride (h-BN) using aberration corrected scanning transmission electron microscopy (STEM). The medium angle annular dark field (MAADF) images reveal sili
Recently hybridized monolayers consisting of hexagonal boron nitride (h-BN) phases inside graphene layer have been synthesized and shown to be an effective way of opening band gap in graphene monolayers [1]. In this letter, we report an ab initio den
The electronic structure of an atomic-layer-deposited MoS2 monolayer on SiO2 was investigated using X-ray absorption spectroscopy (XAS) and synchrotron X-ray photoelectron spectroscopy (XPS). The angle-dependent evolution of the XAS spectra and the p
We report the magnetic imaging of ferromagnetic domains in the van der Waals single crystal MnSb2Te4 from two different sources using cryogenic magnetic force microscopy. The magnetic field dependence of the domains reveals very weak pinning of domai