ﻻ يوجد ملخص باللغة العربية
A classical tool in the study of real closed fields are the fields $K((G))$ of generalised power series (i.e., formal sums with well-ordered support) with coefficients in a field $K$ of characteristic 0 and exponents in an ordered abelian group $G$. A fundamental result of Berarducci ensures the existence of irreducible series in the subring $K((G^{leq 0}))$ of $K((G))$ consisting of the generalised power series with non-positive exponents. It is an open question whether the factorisations of a series in such subring have common refinements, and whether the factorisation becomes unique after taking the quotient by the ideal generated by the non-constant monomials. In this paper, we provide a new class of irreducibles and prove some further cases of uniqueness of the factorisation.
Fields of generalised power series (or Hahn fields), with coefficients in a field and exponents in a divisible ordered abelian group, are a fundamental tool in the study of valued and ordered fields and asymptotic expansions. The subring of the serie
We report on a novel stochastic analysis of seismic time series for the Earths vertical velocity, by using methods originally developed for complex hierarchical systems, and in particular for turbulent flows. Analysis of the fluctuations of the detre
We present a fast variational Bayesian algorithm for performing non-negative matrix factorisation and tri-factorisation. We show that our approach achieves faster convergence per iteration and timestep (wall-clock) than Gibbs sampling and non-probabi
Every set of natural numbers determines a generating function convergent for $q in (-1,1)$ whose behavior as $q rightarrow 1^-$ determines a germ. These germs admit a natural partial ordering that can be used to compare sets of natural numbers in a m
It is possible to approach regression analysis with random covariates from a semiparametric perspective where information is combined from multiple multivariate sources. The approach assumes a semiparametric density ratio model where multivariate dis