ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Optimization with Arbitrary Local Solvers

87   0   0.0 ( 0 )
 نشر من قبل Martin Jaggi
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the growth of data and necessity for distributed optimization methods, solvers that work well on a single machine must be re-designed to leverage distributed computation. Recent work in this area has been limited by focusing heavily on developing highly specific methods for the distributed environment. These special-purpose methods are often unable to fully leverage the competitive performance of their well-tuned and customized single machine counterparts. Further, they are unable to easily integrate improvements that continue to be made to single machine methods. To this end, we present a framework for distributed optimization that both allows the flexibility of arbitrary solvers to be used on each (single) machine locally, and yet maintains competitive performance against other state-of-the-art special-purpose distributed methods. We give strong primal-dual convergence rate guarantees for our framework that hold for arbitrary local solvers. We demonstrate the impact of local solver selection both theoretically and in an extensive experimental comparison. Finally, we provide thorough implementation details for our framework, highlighting areas for practical performance gains.



قيم البحث

اقرأ أيضاً

We present Ecole, a new library to simplify machine learning research for combinatorial optimization. Ecole exposes several key decision tasks arising in general-purpose combinatorial optimization solvers as control problems over Markov decision proc esses. Its interface mimics the popular OpenAI Gym library and is both extensible and intuitive to use. We aim at making this library a standardized platform that will lower the bar of entry and accelerate innovation in the field. Documentation and code can be found at https://www.ecole.ai.
Motivated by large-scale optimization problems arising in the context of machine learning, there have been several advances in the study of asynchronous parallel and distributed optimization methods during the past decade. Asynchronous methods do not require all processors to maintain a consistent view of the optimization variables. Consequently, they generally can make more efficient use of computational resources than synchronous methods, and they are not sensitive to issues like stragglers (i.e., slow nodes) and unreliable communication links. Mathematical modeling of asynchronous methods involves proper accounting of information delays, which makes their analysis challenging. This article reviews recent developments in the design and analysis of asynchronous optimization methods, covering both centralized methods, where all processors update a master copy of the optimization variables, and decentralized methods, where each processor maintains a local copy of the variables. The analysis provides insights as to how the degree of asynchrony impacts convergence rates, especially in stochastic optimization methods.
We resolve the min-max complexity of distributed stochastic convex optimization (up to a log factor) in the intermittent communication setting, where $M$ machines work in parallel over the course of $R$ rounds of communication to optimize the objecti ve, and during each round of communication, each machine may sequentially compute $K$ stochastic gradient estimates. We present a novel lower bound with a matching upper bound that establishes an optimal algorithm.
Hogwild! implements asynchronous Stochastic Gradient Descent (SGD) where multiple threads in parallel access a common repository containing training data, perform SGD iterations and update shared state that represents a jointly learned (global) model . We consider big data analysis where training data is distributed among local data sets in a heterogeneous way -- and we wish to move SGD computations to local compute nodes where local data resides. The results of these local SGD computations are aggregated by a central aggregator which mimics Hogwild!. We show how local compute nodes can start choosing small mini-batch sizes which increase to larger ones in order to reduce communication cost (round interaction with the aggregator). We improve state-of-the-art literature and show $O(sqrt{K}$) communication rounds for heterogeneous data for strongly convex problems, where $K$ is the total number of gradient computations across all local compute nodes. For our scheme, we prove a textit{tight} and novel non-trivial convergence analysis for strongly convex problems for {em heterogeneous} data which does not use the bounded gradient assumption as seen in many existing publications. The tightness is a consequence of our proofs for lower and upper bounds of the convergence rate, which show a constant factor difference. We show experimental results for plain convex and non-convex problems for biased (i.e., heterogeneous) and unbiased local data sets.
We analyze Local SGD (aka parallel or federated SGD) and Minibatch SGD in the heterogeneous distributed setting, where each machine has access to stochastic gradient estimates for a different, machine-specific, convex objective; the goal is to optimi ze w.r.t. the average objective; and machines can only communicate intermittently. We argue that, (i) Minibatch SGD (even without acceleration) dominates all existing analysis of Local SGD in this setting, (ii) accelerated Minibatch SGD is optimal when the heterogeneity is high, and (iii) present the first upper bound for Local SGD that improves over Minibatch SGD in a non-homogeneous regime.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا