ﻻ يوجد ملخص باللغة العربية
In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which should generate cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argument to justify the lack of scaling for the residual cases.
We study the network of Type-I cosmic strings using the field-theoretic numerical simulations in the Abelian-Higgs model. For Type-I strings, the gauge field plays an important role, and thus we find that the correlation length of the strings is stro
We consider the femto-lensing due to a cosmic string. If a cosmic string with the deficit angle $Deltasim 100$ [femto-arcsec] $sim10^{-18}$ [rad] exists around the line of sight to a gamma-ray burst, we may observe characteristic interference pattern
Recent work by Jenkins and Sakellariadou claims that cusps on cosmic strings lead to black hole production. To derive this conclusion they use the hoop conjecture in the rest frame of the string loop, rather than in the rest frame of the proposed bla
We determine the distribution of cosmic string loops directly from simulations, rather than determining the loop production function and inferring the loop distribution from that. For a wide range of loop lengths, the results agree well with a power
Primordial black holes could have been formed in the early universe from non linear cosmological perturbations re-entering the cosmological horizon when the Universe was still radiation dominated. Starting from the shape of the power spectrum on supe