ﻻ يوجد ملخص باللغة العربية
Recent work by Jenkins and Sakellariadou claims that cusps on cosmic strings lead to black hole production. To derive this conclusion they use the hoop conjecture in the rest frame of the string loop, rather than in the rest frame of the proposed black hole. Most of the energy they include is the bulk motion of the string near the cusp. We redo the analysis taking this into account and find that cusps on cosmic strings with realistic energy scale do not produce black holes, unless the cusp parameters are extremely fine-tuned.
We consider the evolution of a cosmic string loop that is captured by a much more massive and compact black hole. We show that after several reconnections that produce ejections of smaller loops, the loop that remains bound to the black hole moves on
Primordial black holes (PBHs) are of fundamental interest in cosmology and astrophysics, and have received much attention as a dark matter candidate and as a potential source of gravitational waves. One possible PBH formation mechanism is the gravita
A universal mechanism may be responsible for several unresolved cosmic conundra. The sudden drop in the pressure of relativistic matter at $W^{pm}/Z^{0}$ decoupling, the quark--hadron transition and $e^{+}e^{-}$ annihilation enhances the probability
We determine the distribution of cosmic string loops directly from simulations, rather than determining the loop production function and inferring the loop distribution from that. For a wide range of loop lengths, the results agree well with a power
An observable stochastic background of gravitational waves is generated whenever primordial black holes are created in the early universe thanks to a small-scale enhancement of the curvature perturbation. We calculate the anisotropies and non-Gaussia