ترغب بنشر مسار تعليمي؟ اضغط هنا

Maximum Entropy Binary Encoding for Face Template Protection

52   0   0.0 ( 0 )
 نشر من قبل Rohit Pandey
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present a framework for secure identification using deep neural networks, and apply it to the task of template protection for face authentication. We use deep convolutional neural networks (CNNs) to learn a mapping from face images to maximum entropy binary (MEB) codes. The mapping is robust enough to tackle the problem of exact matching, yielding the same code for new samples of a user as the code assigned during training. These codes are then hashed using any hash function that follows the random oracle model (like SHA-512) to generate protected face templates (similar to text based password protection). The algorithm makes no unrealistic assumptions and offers high template security, cancelability, and state-of-the-art matching performance. The efficacy of the approach is shown on CMU-PIE, Extended Yale B, and Multi-PIE face databases. We achieve high (~95%) genuine accept rates (GAR) at zero false accept rate (FAR) with up to 1024 bits of template security.

قيم البحث

اقرأ أيضاً

We address the fundamental performance issues of template protection (TP) for iris verification. We base our work on the popular Bloom-Filter templates protection & address the key challenges like sub-optimal performance and low unlinkability. Specif ically, we focus on cases where Bloom-filter templates results in non-ideal performance due to presence of large degradations within iris images. Iris recognition is challenged with number of occluding factors such as presence of eye-lashes within captured image, occlusion due to eyelids, low quality iris images due to motion blur. All of such degrading factors result in obtaining non-reliable iris codes & thereby provide non-ideal biometric performance. These factors directly impact the protected templates derived from iris images when classical Bloom-filters are employed. To this end, we propose and extend our earlier ideas of Morton-filters for obtaining better and reliable templates for iris. Morton filter based TP for iris codes is based on leveraging the intra and inter-class distribution by exploiting low-rank iris codes to derive the stable bits across iris images for a particular subject and also analyzing the discriminable bits across various subjects. Such low-rank non-noisy iris codes enables realizing the template protection in a superior way which not only can be used in constrained setting, but also in relaxed iris imaging. We further extend the work to analyze the applicability to VIS iris images by employing a large scale public iris image database - UBIRIS(v1 & v2), captured in a unconstrained setting. Through a set of experiments, we demonstrate the applicability of proposed approach and vet the strengths and weakness. Yet another contribution of this work stems in assessing the security of the proposed approach where factors of Unlinkability is studied to indicate the antagonistic nature to relaxed iris imaging scenarios.
Convolutional neural networks have made remarkable progress in the face recognition field. The more the technology of face recognition advances, the greater discriminative features into a face template. However, this increases the threat to user priv acy in case the template is exposed. In this paper, we present a modular architecture for face template protection, called IronMask, that can be combined with any face recognition system using angular distance metric. We circumvent the need for binarization, which is the main cause of performance degradation in most existing face template protections, by proposing a new real-valued error-correcting-code that is compatible with real-valued templates and can therefore, minimize performance degradation. We evaluate the efficacy of IronMask by extensive experiments on two face recognitions, ArcFace and CosFace with three datasets, CMU-Multi-PIE, FEI, and Color-FERET. According to our experimental results, IronMask achieves a true accept rate (TAR) of 99.79% at a false accept rate (FAR) of 0.0005% when combined with ArcFace, and 95.78% TAR at 0% FAR with CosFace, while providing at least 115-bit security against known attacks.
Fine-Grained Visual Classification (FGVC) is an important computer vision problem that involves small diversity within the different classes, and often requires expert annotators to collect data. Utilizing this notion of small visual diversity, we re visit Maximum-Entropy learning in the context of fine-grained classification, and provide a training routine that maximizes the entropy of the output probability distribution for training convolutional neural networks on FGVC tasks. We provide a theoretical as well as empirical justification of our approach, and achieve state-of-the-art performance across a variety of classification tasks in FGVC, that can potentially be extended to any fine-tuning task. Our method is robust to different hyperparameter values, amount of training data and amount of training label noise and can hence be a valuable tool in many similar problems.
130 - Sheng Li , Xin Chen , Zhigao Zheng 2017
In this paper, we propose a novel scheme for data hiding in the fingerprint minutiae template, which is the most popular in fingerprint recognition systems. Various strategies are proposed in data embedding in order to maintain the accuracy of finger print recognition as well as the undetectability of data hiding. In bits replacement based data embedding, we replace the last few bits of each element of the original minutiae template with the data to be hidden. This strategy can be further improved using an optimized bits replacement based data embedding, which is able to minimize the impact of data hiding on the performance of fingerprint recognition. The third strategy is an order preserving mechanism which is proposed to reduce the detectability of data hiding. By using such a mechanism, it would be difficult for the attacker to differentiate the minutiae template with hidden data from the original minutiae templates. The experimental results show that the proposed data hiding scheme achieves sufficient capacity for hiding common personal data, where the accuracy of fingerprint recognition is acceptable after the data hiding.
112 - Kai Wang , Xiaojun Quan , Rui Wang 2019
The success of neural summarization models stems from the meticulous encodings of source articles. To overcome the impediments of limited and sometimes noisy training data, one promising direction is to make better use of the available training data by applying filters during summarization. In this paper, we propose a novel Bi-directional Selective Encoding with Template (BiSET) model, which leverages template discovered from training data to softly select key information from each source article to guide its summarization process. Extensive experiments on a standard summarization dataset were conducted and the results show that the template-equipped BiSET model manages to improve the summarization performance significantly with a new state of the art.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا