ترغب بنشر مسار تعليمي؟ اضغط هنا

BiSET: Bi-directional Selective Encoding with Template for Abstractive Summarization

113   0   0.0 ( 0 )
 نشر من قبل Xiaojun Quan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The success of neural summarization models stems from the meticulous encodings of source articles. To overcome the impediments of limited and sometimes noisy training data, one promising direction is to make better use of the available training data by applying filters during summarization. In this paper, we propose a novel Bi-directional Selective Encoding with Template (BiSET) model, which leverages template discovered from training data to softly select key information from each source article to guide its summarization process. Extensive experiments on a standard summarization dataset were conducted and the results show that the template-equipped BiSET model manages to improve the summarization performance significantly with a new state of the art.



قيم البحث

اقرأ أيضاً

124 - Qingyu Zhou , Nan Yang , Furu Wei 2017
We propose a selective encoding model to extend the sequence-to-sequence framework for abstractive sentence summarization. It consists of a sentence encoder, a selective gate network, and an attention equipped decoder. The sentence encoder and decode r are built with recurrent neural networks. The selective gate network constructs a second level sentence representation by controlling the information flow from encoder to decoder. The second level representation is tailored for sentence summarization task, which leads to better performance. We evaluate our model on the English Gigaword, DUC 2004 and MSR abstractive sentence summarization datasets. The experimental results show that the proposed selective encoding model outperforms the state-of-the-art baseline models.
In a large-scale knowledge graph (KG), an entity is often described by a large number of triple-structured facts. Many applications require abridge
Most prior work in the sequence-to-sequence paradigm focused on datasets with input sequence lengths in the hundreds of tokens due to the computational constraints of common RNN and Transformer architectures. In this paper, we study long-form abstrac tive text summarization, a sequence-to-sequence setting with input sequence lengths up to 100,000 tokens and output sequence lengths up to 768 tokens. We propose SEAL, a Transformer-based model, featuring a new encoder-decoder attention that dynamically extracts/selects input snippets to sparsely attend to for each output segment. Using only the original documents and summaries, we derive proxy labels that provide weak supervision for extractive layers simultaneously with regular supervision from abstractive summaries. The SEAL model achieves state-of-the-art results on existing long-form summarization tasks, and outperforms strong baseline models on a new dataset/task we introduce, Search2Wiki, with much longer input text. Since content selection is explicit in the SEAL model, a desirable side effect is that the selection can be inspected for enhanced interpretability.
Current abstractive summarization systems outperform their extractive counterparts, but their widespread adoption is inhibited by the inherent lack of interpretability. To achieve the best of both worlds, we propose EASE, an extractive-abstractive fr amework for evidence-based text generation and apply it to document summarization. We present an explainable summarization system based on the Information Bottleneck principle that is jointly trained for extraction and abstraction in an end-to-end fashion. Inspired by previous research that humans use a two-stage framework to summarize long documents (Jing and McKeown, 2000), our framework first extracts a pre-defined amount of evidence spans as explanations and then generates a summary using only the evidence. Using automatic and human evaluations, we show that explanations from our framework are more relevant than simple baselines, without substantially sacrificing the quality of the generated summary.
Multimodal abstractive summarization with sentence output is to generate a textual summary given a multimodal triad -- sentence, image and audio, which has been proven to improve users satisfaction and convenient our life. Existing approaches mainly focus on the enhancement of multimodal fusion, while ignoring the unalignment among multiple inputs and the emphasis of different segments in feature, which has resulted in the superfluity of multimodal interaction. To alleviate these problems, we propose a Multimodal Hierarchical Selective Transformer (mhsf) model that considers reciprocal relationships among modalities (by low-level cross-modal interaction module) and respective characteristics within single fusion feature (by high-level selective routing module). In details, it firstly aligns the inputs from different sources and then adopts a divide and conquer strategy to highlight or de-emphasize multimodal fusion representation, which can be seen as a sparsely feed-forward model - different groups of parameters will be activated facing different segments in feature. We evaluate the generalism of proposed mhsf model with the pre-trained+fine-tuning and fresh training strategies. And Further experimental results on MSMO demonstrate that our model outperforms SOTA baselines in terms of ROUGE, relevance scores and human evaluation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا