ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric and chemical components of the giant piezoresistance in silicon nanowires

70   0   0.0 ( 0 )
 نشر من قبل Alistair Rowe
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A wide variety of apparently contradictory piezoresistance (PZR) behaviors have been reported in p-type silicon nanowires (SiNW), from the usual positive bulk effect to anomalous (negative) PZR and giant PZR. The origin of such a range of diverse phenomena is unclear, and consequently so too is the importance of a number of parameters including SiNW type (top down or bottom up), stress concentration, electrostatic field effects, or surface chemistry. Here we observe all these PZR behaviors in a single set of nominally p-type, $langle 110 rangle$ oriented, top-down SiNWs at uniaxial tensile stresses up to 0.5 MPa. Longitudinal $pi$-coefficients varying from $-800times10^{-11}$ Pa$^{-1}$ to $3000times10^{-11}$ Pa$^{-1}$ are measured. Micro-Raman spectroscopy on chemically treated nanowires reveals that stress concentration is the principal source of giant PZR. The sign and an excess PZR similar in magnitude to the bulk effect are related to the chemical treatment of the SiNW.

قيم البحث

اقرأ أيضاً

The giant piezoresistance (PZR) previously reported in silicon nanowires is experimentally investigated in a large number of surface depleted silicon nano- and micro-structures. The resistance is shown to vary strongly with time due to electron and h ole trapping at the sample surfaces. Importantly, this time varying resistance manifests itself as an apparent giant PZR identical to that reported elsewhere. By modulating the applied stress in time, the true PZR of the structures is found to be comparable with that of bulk silicon.
94 - A. C. H. Rowe 2013
Piezoresistance is the change in the electrical resistance, or more specifically the resistivity, of a solid induced by an applied mechanical stress. The origin of this effect in bulk, crystalline materials like Silicon, is principally a change in th e electronic structure which leads to a modification of the charge carriers effective mass. The last few years have seen a rising interest in the piezoresistive properties of semiconductor nanostructures, motivated in large part by claims of a giant piezoresistance effect in Silicon nanowires that is more than two orders of magnitude bigger than the known bulk effect. This review aims to present the controversy surrounding claims and counter-claims of giant piezoresistance in Silicon nanostructures by presenting a summary of the major works carried out over the last 10 years. The main conclusions that can be drawn from the literature are that i) reproducible evidence for a giant piezoresistance effect in un-gated Silicon nanowires is limited, ii) in gated nanowires a giant effect has been reproduced by several authors, iii) the giant effect is fundamentally different from either the bulk Silicon piezoresistance or that due to quantum confinement in accumulation layers and heterostructures, the evidence pointing to an electrostatic origin for the piezoresistance, iv) released nanowires tend to have slightly larger piezoresistance coefficients than un-released nanowires, and v) insufficient work has been performed on bottom-up grown nanowires to be able to rule out a fundamental difference in their properties when compared with top-down nanowires. On the basis of this, future possible research directions are suggested.
We present piezoresistance measurements in modulation doped AlAs quantum wells where the two-dimensional electron system occupies two conduction band valleys with elliptical Fermi contours. Our data demonstrate that, at low temperatures, the strain g auge factor (the fractional change in resistance divided by the samples fractional length change) in this system exceeds 10,000. Moreover, in the presence of a moderate magnetic field perpendicular to the plane of the two-dimensional system, gauge factors up to 56,000 can be achieved. The piezoresistance data can be explained qualitatively by a simple model that takes into account intervalley charge transfer.
An AlAs two-dimensional electron system patterned with an anti-dot lattice exhibits a giant piezoresistance (GPR) effect, with a sign opposite to the piezoresistance observed in the unpatterned region. We trace the origin of this anomalous GPR to the non-uniform strain in the anti-dot lattice and the exclusion of electrons occupying the two conduction band valleys from different regions of the sample. This is analogous to the well-known giant magnetoresistance (GMR) effect, with valley playing the role of spin and strain the role of magnetic field.
286 - Riccardo Rurali 2009
In this paper we review the theory of silicon nanowires. We focus on nanowires with diameters below 10 nm, where quantum effects become important and the properties diverge significantly from those of bulk silicon. These wires can be efficiently trea ted within electronic structure simulation methods and will be among the most important functional blocks of future nanoelectronic devices. Firstly, we review the structural properties of silicon nanowires, emphasizing the close connection between the growth orientation, the cross-section and the bounding facets. Secondly, we discuss the electronic structure of pristine and doped nanowires, which hold the ultimate key for their applicability in novel electronic devices. Finally, we review transport properties where some of the most important limitations in the performances of nanowire-based devices can lay. Many of the unique properties of these systems are at the same time defying challenges and opportunities for great technological advances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا