ﻻ يوجد ملخص باللغة العربية
The Planck catalogue of SZ sources limits itself to a significance threshold of 4.5 to ensure a low contamination rate by false cluster candidates. This means that only the most massive clusters at redshift z>0.5, and in particular z>0.7, are expected to enter into the catalogue, with a large number of systems in that redshift regime being expected around and just below that threshold. In this paper, we follow-up a sample of SZ sources from the Planck SZ catalogues from 2013 and 2015. In the latter maps, we consider detections around and at lower significance than the threshold adopted by the Planck Collaboration. To keep the contamination rate low, our 28 candidates are chosen to have significant WISE detections, in combination with non-detections in SDSS/DSS, which effectively selects galaxy cluster candidates at redshifts $zgtrsim0.5$. By taking r- and z-band imaging with MegaCam@CFHT, we bridge the 4000A rest-frame break over a significant redshift range, thus allowing accurate redshift estimates of red-sequence cluster galaxies up to z~0.8. After discussing the possibility that an overdensity of galaxies coincides -by chance- with a Planck SZ detection, we confirm that 16 of the candidates have likely optical counterparts to their SZ signals, 13 (6) of which have an estimated redshift z>0.5 (z>0.7). The richnesses of these systems are generally lower than expected given the halo masses estimated from the Planck maps. However, when we follow a simplistic model to correct for Eddington bias in the SZ halo mass proxy, the richnesses are consistent with a reference mass-richness relation established for clusters detected at higher significance. This illustrates the benefit of an optical follow-up, not only to obtain redshift estimates, but also to provide an independent mass proxy that is not based on the same data the clusters are detected with, and thus not subject to Eddington bias.
We present the XMM-Newton follow-up for confirmation of Planck cluster candidates. Twenty-five candidates have been observed to date using snapshot (~10 ksec) exposures, ten as part of a pilot programme to sample a low range of signal-to-noise ratios
We present CARMA observations of the three northern unconfirmed galaxy clusters discovered by the PLANCK satellite. We confirm the existence of two massive clusters (PLCKESZ G115.71+17.52 and PLCKESZ G121.11+57.01) at high significance. For these clu
The Planck satellite has detected cluster candidates via the Sunyaev Zeldovich (SZ) effect, but the optical follow-up required to confirm these candidates is still incomplete, especially at high redshifts and for SZ detections at low significance. In
The physical and chemical properties of prestellar cores, especially massive ones, are still far from being well understood due to the lack of a large sample. The low dust temperature ($<$14 K) of Planck cold clumps makes them promising candidates fo
We are conducting a large program to classify newly discovered Milky Way star cluster candidates from the list of Froebrich, Scholz & Raftery (2007). Here we present deep NIR follow-up observations from ESO/NTT of 14 star cluster candidates. We show