ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical follow-up study of 32 high-redshift galaxy cluster candidates from Planck with the William Herschel Telescope

81   0   0.0 ( 0 )
 نشر من قبل Hannah Zohren
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hannah Zohren




اسأل ChatGPT حول البحث

The Planck satellite has detected cluster candidates via the Sunyaev Zeldovich (SZ) effect, but the optical follow-up required to confirm these candidates is still incomplete, especially at high redshifts and for SZ detections at low significance. In this work we present our analysis of optical observations obtained for 32 Planck cluster candidates using ACAM on the 4.2-m William Herschel Telescope. These cluster candidates were preselected using SDSS, WISE, and Pan-STARRS images to likely represent distant clusters at redshifts $z gtrsim 0.7$. We obtain photometric redshift and richness estimates for all of the cluster candidates from a red-sequence analysis of $r$-, $i$-, and $z$-band imaging data. In addition, long-slit observations allow us to measure the redshifts of a subset of the clusters spectroscopically. The optical richness is often lower than expected from the inferred SZ mass when compared to scaling relations previously calibrated at low redshifts. This likely indicates the impact of Eddington bias and projection effects or noise-induced detections, especially at low SZ-significance. Thus, optical follow-up not only provides redshift measurements, but also an important independent verification method. We find that 18 (7) of the candidates at redshifts $z > 0.5$ ($z > 0.8$) are at least half as rich as expected from scaling relations, thereby clearly confirming these candidates as massive clusters. While the complex selection function of our sample due to our preselection hampers its use for cosmological studies, we do provide a validation of massive high-redshift clusters particularly suitable for further astrophysical investigations.



قيم البحث

اقرأ أيضاً

We present CARMA observations of the three northern unconfirmed galaxy clusters discovered by the PLANCK satellite. We confirm the existence of two massive clusters (PLCKESZ G115.71+17.52 and PLCKESZ G121.11+57.01) at high significance. For these clu sters, we present refined centroid locations from the 31 GHz CARMA data, as well as mass estimates obtained from a joint analysis of CARMA and PLANCK data. We do not detect the third candidate, PLCKESZ G189.84-37.24, and place an upper limit on its mass of M500 < 3.2 X 10^(14) M_SUN at 68% confidence. Considering our data and the characteristics of the PLANCK Early Release SZ Catalog, we conclude that this object is likely to be a cold-core object in the plane of our Galaxy. As a result, we estimate the purity of the ESZ Catalog to be greater than 99.5%.
We present SCUBA-2 follow-up of 61 candidate high-redshift Planck sources. Of these, 10 are confirmed strong gravitational lenses and comprise some of the brightest such submm sources on the observed sky, while 51 are candidate proto-cluster fields u ndergoing massive starburst events. With the accompanying Herschel-SPIRE observations and assuming an empirical dust temperature prior of $34^{+13}_{-9}$ K, we provide photometric redshift and far-IR luminosity estimates for 172 SCUBA-2-selected sources within these Planck overdensity fields. The redshift distribution of the sources peak between a redshift of 2 and 4, with one third of the sources having $S_{500}$/$S_{350} > 1$. For the majority of the sources, we find far-IR luminosities of approximately $10^{13},mathrm{L}_odot$, corresponding to star-formation rates of around $1000$ M$_odot mathrm{yr}^{-1}$. For $S_{850}>8$ mJy sources, we show that there is up to an order of magnitude increase in star-formation rate density and an increase in uncorrected number counts of $6$ for $S_{850}>8$ mJy when compared to typical cosmological survey fields. The sources detected with SCUBA-2 account for only approximately $5$ per cent of the Planck flux at 353 GHz, and thus many more fainter sources are expected in these fields.
[Abridged] We use the Planck all-sky submm and mm maps to search for rare sources distinguished by extreme brightness, a few hundreds of mJy, and their potential for being situated at high redshift. These cold Planck sources, selected using the High Frequency Instrument (HFI) directly from the maps and from the Planck Catalogue of Compact Sources (PCCS), all satisfy the criterion of having their rest-frame far-infrared peak redshifted to the frequency range 353 and 857 GHz. This colour-selection favours galaxies in the redshift range z=2-4, which we consider as cold peaks in the cosmic infrared background (CIB). We perform a dedicated Herschel-SPIRE follow-up of 234 such Planck targets, finding a significant excess of red 350 and 500um sources, in comparison to reference SPIRE fields. About 94% of the SPIRE sources in the Planck fields are consistent with being overdensities of galaxies peaking at 350um. About 3% are candidate lensed systems, all 12 of which have secure spectroscopic confirmations, placing them at redshifts z>2.2. The galaxy overdensities are detected with high significance, half of the sample showing statistical significance above 10sigma. The SPIRE photometric redshifts of galaxies in overdensities suggest a peak at z~2. Under the Td=35K assumption, we derive an infrared (IR) luminosity for each SPIRE source of about 4x10^12 Lsun, yielding star formation rates of typically 700 Msun.yr^-1. If the observed overdensities are actual gravitationally-bound structures, the total total star formation rates reaches 7x10^3 Msun.yr^-1. Taken together, these sources show the signatures of high-z (z>$) protoclusters of intensively star-forming galaxies. All these observations confirm the uniqueness of our sample and demonstrate the ability of the all-sky Planck-HFI cold sources to select populations of cosmological and astrophysical interest for structure formation studies.
We characterise the distribution of quasars within dark matter halos using a direct measurement technique for the first time at redshifts as high as $z sim 1$. Using the Planck Sunyaev-Zeldovich (SZ) catalogue for galaxy groups and the Sloan Digital Sky Survey (SDSS) DR12 quasar dataset, we assign host clusters/groups to the quasars and make a measurement of the mean number of quasars within dark matter halos as a function of halo mass. We find that a simple power-law fit of $logleft <Nright> = (2.11 pm 0.01) log (M) -(32.77 pm 0.11)$ can be used to model the quasar fraction in dark matter halos. This suggests that the quasar fraction increases monotonically as a function of halo mass even to redshifts as high as $zsim 1$.
We present the XMM-Newton follow-up for confirmation of Planck cluster candidates. Twenty-five candidates have been observed to date using snapshot (~10 ksec) exposures, ten as part of a pilot programme to sample a low range of signal-to-noise ratios (4<S/N<6), and a further 15 in a programme to observe a sample of S/N>5 candidates. The sensitivity and spatial resolution of XMM-Newton allows unambiguous discrimination between clusters and false candidates. The 4 false candidates have S/N <= 4.1. A total of 21 candidates are confirmed as extended X-ray sources. Seventeen are single clusters, the majority of which are found to have highly irregular and disturbed morphologies (about ~70%). The remaining four sources are multiple systems, including the unexpected discovery of a supercluster at z=0.45. For 20 sources we are able to derive a redshift estimate from the X-ray Fe K line (albeit of variable quality). The new clusters span the redshift range 0.09 <= z <= 0.54, with a median redshift of z~0.37. A first determination is made of their X-ray properties including the characteristic size, which is used to improve the estimate of the SZ Compton parameter, Y_SZ. The follow-up validation programme has helped to optimise the Planck candidate selection process. It has also provided a preview of the X-ray properties of these newly-discovered clusters, allowing comparison with their SZ properties, and to the X-ray and SZ properties of known clusters observed in the Planck survey. Our results suggest that Planck may have started to reveal a non-negligible population of massive dynamically perturbed objects that is under-represented in X-ray surveys. However, despite their particular properties, these new clusters appear to follow the Y_SZ-Y_X relation established for X-ray selected objects, where Y_X is the product of the gas mass and temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا