ﻻ يوجد ملخص باللغة العربية
Vortices and vortex arrays have been used as a hallmark of superfluidity in rotated, ultracold Fermi gases. These superfluids can be described in terms of an effective field theory for a macroscopic wave function representing the field of condensed pairs, analogous to the Ginzburg-Landau theory for superconductors. Here, we have established how rotation modifies this effective field theory, by rederiving it starting from the action of Fermi gas in the rotating frame of reference. The rotation leads to the appearance of an effective vector potential, and the coupling strength of this vector potential to the macroscopic wave function depends on the interaction strength between the fermions, due to a renormalization of the pair effective mass in the effective field theory. The mass renormalization derived here is in agreement with results of functional renormalization group theory. In the extreme BEC regime, the pair effective mass tends to twice the fermion mass, in agreement with the physical picture of a weakly interacting Bose gas of molecular pairs. Then, we use our macroscopic wave function description to study vortices and the critical rotation frequencies to form them. Equilibrium vortex state diagrams are derived, and they are in good agreement with available results of the Bogoliubov - De Gennes theory and with experimental data.
Quantum Monte Carlo (QMC) techniques are used to provide an approximation-free investigation of the phases of the one-dimensional attractive Hubbard Hamiltonian in the presence of population imbalance. The temperature at which the Fulde-Ferrell-Larki
Quantized vortices carry the angular momentum in rotating superfluids, and are key to the phenomenon of quantum turbulence. Advances in ultra-cold atom technology enable quantum turbulence to be studied in regimes with both experimental and theoretic
The contact ${cal I}$, introduced by Tan, has emerged as a key parameter characterizing universal properties of strongly interacting Fermi gases. For ultracold Fermi gases near a Feshbach resonance, the contact depends upon two quantities: the intera
We use classical field simulations of the homogeneous Bose gas to study the breakdown of superflow due to vortex nucleation past a cylindrical obstacle at finite temperature. Thermal fluctuations modify the vortex nucleation from the obstacle, turnin
We develop a finite temperature Hartree theory for the trapped dipolar Bose gas. We use this theory to study thermal effects on the mechanical stability of the system and density oscillating condensate states. We present results for the stability pha