ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite temperature QMC study of the one-dimensional polarized Fermi gas

171   0   0.0 ( 0 )
 نشر من قبل George Batrouni
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum Monte Carlo (QMC) techniques are used to provide an approximation-free investigation of the phases of the one-dimensional attractive Hubbard Hamiltonian in the presence of population imbalance. The temperature at which the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase is destroyed by thermal fluctuations is determined as a function of the polarization. It is shown that the presence of a confining potential does not dramatically alter the FFLO regime, and that recent experiments on trapped atomic gases likely lie just within the stable temperature range.

قيم البحث

اقرأ أيضاً

We use the T-matrix approach for studying highly polarized homogeneous Fermi gases in one dimension with repulsive or attractive contact interactions. Using this approach, we compute ground state energies and values for the contact parameter that sho w excellent agreement with exact and other numerical methods at zero temperature, even in the strongly interacting regime. Furthermore, we derive an exact expression for the value of the contact parameter in one dimension at zero temperature. The model is then extended and used for studying the temperature dependence of ground state energies and the contact parameter.
88 - S. N. Klimin 2015
Vortices and vortex arrays have been used as a hallmark of superfluidity in rotated, ultracold Fermi gases. These superfluids can be described in terms of an effective field theory for a macroscopic wave function representing the field of condensed p airs, analogous to the Ginzburg-Landau theory for superconductors. Here, we have established how rotation modifies this effective field theory, by rederiving it starting from the action of Fermi gas in the rotating frame of reference. The rotation leads to the appearance of an effective vector potential, and the coupling strength of this vector potential to the macroscopic wave function depends on the interaction strength between the fermions, due to a renormalization of the pair effective mass in the effective field theory. The mass renormalization derived here is in agreement with results of functional renormalization group theory. In the extreme BEC regime, the pair effective mass tends to twice the fermion mass, in agreement with the physical picture of a weakly interacting Bose gas of molecular pairs. Then, we use our macroscopic wave function description to study vortices and the critical rotation frequencies to form them. Equilibrium vortex state diagrams are derived, and they are in good agreement with available results of the Bogoliubov - De Gennes theory and with experimental data.
99 - Yajiang Hao , Yafei Song 2016
We investigate the strongly interacting hard-core anyon gases in a one dimensional harmonic potential at finite temperature by extending thermal Bose-Fermi mapping method to thermal anyon-ferimon mapping method. With thermal anyon-fermion mapping met hod we obtain the reduced one-body density matrix and therefore the momentum distribution for different statistical parameters and temperatures. At low temperature hard-core anyon gases exhibit the similar properties as those of ground state, which interpolate between Bose-like and Fermi-like continuously with the evolution of statistical properties. At high temperature hard-core anyon gases of different statistical properties display the same reduced one-body density matrix and momentum distribution as those of spin-polarized fermions. The Tans contact of hard-core anyon gas at finite temperature is also evaluated, which take the simple relation with that of Tonks-Girardeau gas $C_b$ as $C=frac12(1-coschipi)C_b$.
We study the viscous properties of a system of weakly interacting spin-$frac{1}{2}$ fermions in one dimension. Accounting for the effect of interactions on the quasiparticle energy spectrum, we obtain the bulk viscosity of this system at low temperat ures. Our result is valid for frequencies that are small compared with the rate of fermion backscattering. For frequencies larger than this exponentially small rate, the excitations of the system become decoupled from the center of mass motion, and the fluid is described by two-fluid hydrodynamics. We calculate the three transport coefficients required to describe viscous dissipation in this regime.
We simulate a balanced attractively interacting two-component Fermi gas in a one-dimensional lattice perturbed with a moving potential well or barrier. Using the time-evolving block decimation method, we study different velocities of the perturbation and distinguish two velocity regimes based on clear differences in the time evolution of particle densities and the pair correlation function. We show that, in the slow regime, the densities deform as particles are either attracted by the potential well or repelled by the barrier, and a wave front of hole or particle excitations propagates at the maximum group velocity. Simultaneously, the initial pair correlations are broken and coherence over different sites is lost. In contrast, in the fast regime, the densities are not considerably deformed and the pair correlations are preserved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا