ﻻ يوجد ملخص باللغة العربية
We present a novel technique for sparse principal component analysis. This method, named Eigenvectors from Eigenvalues Sparse Principal Component Analysis (EESPCA), is based on the recently detailed formula for computing normed, squared eigenvector loadings of a Hermitian matrix from the eigenvalues of the full matrix and associated sub-matrices. Relative to the state-of-the-art LASSO-based sparse PCA method of Witten, Tibshirani and Hastie, the EESPCA technique offers a two-orders-of-magnitude improvement in computational speed, does not require estimation of tuning parameters, and can more accurately identify true zero principal component loadings across a range of data matrix sizes and covariance structures. Importantly, EESPCA achieves these performance benefits while maintaining a reconstruction error close to that generated by the Witten et al. approach. EESPCA is a practical and effective technique for sparse PCA with particular relevance to computationally demanding problems such as the analysis of large data matrices or statistical techniques like resampling that involve the repeated application of sparse PCA.
There are several cutting edge applications needing PCA methods for data on tori and we propose a novel torus-PCA method with important properties that can be generally applied. There are two existing general methods: tangent space PCA and geodesic P
Sparse Principal Component Analysis (SPCA) is widely used in data processing and dimension reduction; it uses the lasso to produce modified principal components with sparse loadings for better interpretability. However, sparse PCA never considers an
Sparse principal component analysis (PCA) is a popular tool for dimensional reduction of high-dimensional data. Despite its massive popularity, there is still a lack of theoretically justifiable Bayesian sparse PCA that is computationally scalable. A
Functional binary datasets occur frequently in real practice, whereas discrete characteristics of the data can bring challenges to model estimation. In this paper, we propose a sparse logistic functional principal component analysis (SLFPCA) method t
Principal component analysis (PCA) is an important tool in exploring data. The conventional approach to PCA leads to a solution which favours the structures with large variances. This is sensitive to outliers and could obfuscate interesting underlyin