ﻻ يوجد ملخص باللغة العربية
Handelman (J. Operator Theory, 1981) proved that if the spectral radius of a matrix $A$ is a simple root of the characteristic polynomial and is strictly greater than the modulus of any other root, then $A$ is conjugate to a matrix $Z$ some power of which is positive. In this article, we provide an explicit conjugate matrix $Z$, and prove that the spectral radius of $A$ is a simple and dominant eigenvalue of $A$ if and only if $Z$ is eventually positive. For $ntimes n$ real matrices with each row-sum equal to $1$, this criterion can be declined into checking that each entry of some power is strictly larger than the average of the entries of the same column minus $frac{1}{n}$. We apply the criterion to elements of irreducible infinite nonaffine Coxeter groups to provide evidences for the dominance of the spectral radius, which is still unknown.
We prove that for any infinite right-angled Coxeter or Artin group, its spherical and geodesic growth rates (with respect to the standard generating set) either take values in the set of Perron numbers, or equal $1$. Also, we compute the average numb
We define a large class of abstract Coxeter groups, that we call $infty$--spanned, and for which the word growth rate and the geodesic growth rate appear to be Perron numbers. This class contains a fair amount of Coxeter groups acting on hyperbolic s
We consider the question of determining whether a given group (especially one generated by involutions) is a right-angled Coxeter group. We describe a group invariant, the involution graph, and we characterize the involution graphs of right-angled Co
A graph $X$ is defined inductively to be $(a_0,dots,a_{n-1})$-regular if $X$ is $a_0$-regular and for every vertex $v$ of $X$, the sphere of radius $1$ around $v$ is an $(a_1,dots,a_{n-1})$-regular graph. Such a graph $X$ is said to be highly regular
In this paper we will present the results of Artin--Markov on braid groups by using the Groebner--Shirshov basis. As a consequence we can reobtain the normal form of Artin--Markov--Ivanovsky as an easy corollary.