ترغب بنشر مسار تعليمي؟ اضغط هنا

Spherical and geodesic growth rates of right-angled Coxeter and Artin groups are Perron numbers

105   0   0.0 ( 0 )
 نشر من قبل Alexander Kolpakov
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that for any infinite right-angled Coxeter or Artin group, its spherical and geodesic growth rates (with respect to the standard generating set) either take values in the set of Perron numbers, or equal $1$. Also, we compute the average number of geodesics representing an element of given word length in such groups.



قيم البحث

اقرأ أيضاً

We define a large class of abstract Coxeter groups, that we call $infty$--spanned, and for which the word growth rate and the geodesic growth rate appear to be Perron numbers. This class contains a fair amount of Coxeter groups acting on hyperbolic s paces, thus corroborating a conjecture by Kellerhals and Perren. We also show that for this class the geodesic growth rate strictly dominates the word growth rate.
We consider the question of determining whether a given group (especially one generated by involutions) is a right-angled Coxeter group. We describe a group invariant, the involution graph, and we characterize the involution graphs of right-angled Co xeter groups. We use this characterization to describe a process for constructing candidate right-angled Coxeter presentations for a given group or proving that one cannot exist. We provide some first applications. In addition, we provide an elementary proof of rigidity of the defining graph for a right-angled Coxeter group. We also recover a result stating that if the defining graph contains no SILs, then Aut^0(W) is a right-angled Coxeter group.
The Tits Conjecture, proved by Crisp and Paris, states that squares of the standard generators of any Artin group generate an obvious right-angled Artin subgroup. We consider a larger set of elements consisting of all the centers of the irreducible s pherical special subgroups of the Artin group, and conjecture that sufficiently large powers of those elements generate an obvious right-angled Artin subgroup. This alleged right-angled Artin subgroup is in some sense as large as possible; its nerve is homeomorphic to the nerve of the ambient Artin group. We verify this conjecture for the class of locally reducible Artin groups, which includes all $2$-dimensional Artin groups, and for spherical Artin groups of any type other than $E_6$, $E_7$, $E_8$. We use our results to conclude that certain Artin groups contain hyperbolic surface subgroups, answering questions of Gordon, Long and Reid.
114 - M. Hull 2021
We show that if a right-angled Artin group $A(Gamma)$ has a non-trivial, minimal action on a tree $T$ which is not a line, then $Gamma$ contains a separating subgraph $Lambda$ such that $A(Lambda)$ stabilizes an edge in $T$.
We show that certain right-angled Coxeter groups have finite index subgroups that quotient to $mathbb Z$ with finitely generated kernels. The proof uses Bestvina-Brady Morse theory facilitated by combinatorial arguments. We describe a variety of exam ples where the plan succeeds or fails. Among the successful examples are the right-angled reflection groups in $mathbb H^4$ with fundamental domain the $120$-cell or the $24$-cell.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا