ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimating SI violation in CMB due to non-circular beam and complex scan in minutes

100   0   0.0 ( 0 )
 نشر من قبل Santanu Das
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mild, unavoidable deviations from circular-symmetry of instrumental beams along with scan strategy can give rise to measurable Statistical Isotropy (SI) violation in Cosmic Microwave Background (CMB) experiments. If not accounted properly, this spurious signal can complicate the extraction of other SI violation signals (if any) in the data. However, estimation of this effect through exact numerical simulation is computationally intensive and time consuming. A generalized analytical formalism not only provides a quick way of estimating this signal, but also gives a detailed understanding connecting the leading beam anisotropy components to a measurable BipoSH characterisation of SI violation. In this paper, we provide an approximate generic analytical method for estimating the SI violation generated due to a non-circular (NC) beam and arbitrary scan strategy, in terms of the Bipolar Spherical Harmonic (BipoSH) spectra. Our analytical method can predict almost all the features introduced by a NC beam in a complex scan and thus reduces the need for extensive numerical simulation worth tens of thousands of CPU hours into minutes long calculations. As an illustrative example, we use WMAP beams and scanning strategy to demonstrate the easability, usability and efficiency of our method. We test all our analytical results against that from exact numerical simulations.

قيم البحث

اقرأ أيضاً

Statistical isotropy (SI) of Cosmic Microwave Background (CMB) fluctuations is a key observational test to validate the cosmological principle underlying the standard model of cosmology. While a detection of SI violation would have immense cosmologic al ramification, it is important to recognise their possible origin in systematic effects of observations. WMAP seven year (WMAP-7) release claimed significant deviation from SI in the bipolar spherical harmonic (BipoSH) coefficients $A_{ll}^{20}$ and $A_{l-2l}^{20}$. Here we present the first explicit reproduction of the measurements reported in WMAP-7, confirming that beam systematics alone can completely account for the measured SI violation. The possibility of such a systematic origin was alluded to in WMAP-7 paper itself and other authors but not as explicitly so as to account for it accurately. We simulate CMB maps using the actual WMAP non-circular beams and scanning strategy. Our estimated BipoSH spectra from these maps match the WMAP-7 results very well. It is also evident that only a very careful and adequately detailed modelling, as carried out here, can conclusively establish that the entire signal arises from non-circular beam effect. This is important since cosmic SI violation signals are expected to be subtle and dismissing a large SI violation signal as observational artefact based on simplistic plausibility arguments run the serious risk of throwing the baby out with the bathwater.
The circular polarization of the cosmic microwave background (CMB) is usually taken to be zero since it is not generated by Thomson scattering. Here we explore the actual level of circular polarization in the CMB generated by conventional cosmologica l sources of birefringence. We consider two classes of mechanisms for birefringence. One is alignment of the matter to produce an anisotropic susceptibility tensor: the hydrogen spins can be aligned either by density perturbations or CMB anisotropies themselves. The other is anisotropy of the radiation field coupled to the non-linear response of the medium to electromagnetic fields: this can occur either via photon-photon scattering (non-linear response of the vacuum); atomic hyperpolarizability (non-linear response of neutral atoms); or plasma delay (non-linear response of free electrons). The strongest effect comes from photon-photon scattering from recombination at a level of $sim 10^{-14}$ K. Our results are consistent with a negligible circular polarization of the CMB in comparison with the linear polarization or the sensitivity of current and near-term experiments.
Circular polarization of the Cosmic Microwave Background (CMB) offers the possibility of detecting rotations of the universe and magnetic fields in the primeval universe or in distant clusters of galaxies. We used the Milano Polarimeter (MIPOL) insta lled at the Testa Grigia Observatory, on the italian Alps, to improve the existing upper limits to the CMB circular polarization at large angular scales. We obtain 95% confidence level upper limits to the degree of the CMB circular polarization ranging between 5.0x10^{-4} and 0.7x10^{-4} at angular scales between 8 and 24 deg, improving by one order of magnitude preexisting upper limits at large angular scales. Our results are still far from the nK region where today expectations place the amplitude of the V Stokes parameter used to characterize circular polarization of the CMB but improve the preexisting limit at similar angular scales. Our observations offered also the opportunity of characterizing the atmospheric emission at 33 GHz at the Testa Grigia Observatory.
We present a new upper limit on CMB circular polarization from the 2015 flight of SPIDER, a balloon-borne telescope designed to search for $B$-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is p redicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the non-zero circular-to-linear polarization coupling of the HWP polarization modulators, data from SPIDERs 2015 Antarctic flight provide a constraint on Stokes $V$ at 95 and 150 GHz from $33<ell<307$. No other limits exist over this full range of angular scales, and SPIDER improves upon the previous limit by several orders of magnitude, providing 95% C.L. constraints on $ell (ell+1)C_{ell}^{VV}/(2pi)$ ranging from 141 $mu K ^2$ to 255 $mu K ^2$ at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain even stronger constraints on circular polarization.
120 - Carlo R. Contaldi 2015
Correlations of polarization components in the coordinate frame are a natural basis for searches of parity-violating modes in the Cosmic Microwave Background (CMB). This fact can be exploited to build estimators of parity-violating modes that are {sl local} and robust with respect to partial-sky coverage or inhomogeneous weighting. As an example application of a method based on these ideas we develop a peak stacking tool that isolates the signature of parity-violating modes. We apply the tool to {sl Planck} maps and obtain a constraint on the monopole of the polarization rotation angle $alpha < 0.72$ degrees at $95%$ We also demonstrate how the tool can be used as a local method for reconstructing maps of direction dependent rotation $alpha(hat {n})$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا