ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring circular polarization in the CMB due to conventional sources of cosmic birefringence

82   0   0.0 ( 0 )
 نشر من قبل Paulo Montero-Camacho
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The circular polarization of the cosmic microwave background (CMB) is usually taken to be zero since it is not generated by Thomson scattering. Here we explore the actual level of circular polarization in the CMB generated by conventional cosmological sources of birefringence. We consider two classes of mechanisms for birefringence. One is alignment of the matter to produce an anisotropic susceptibility tensor: the hydrogen spins can be aligned either by density perturbations or CMB anisotropies themselves. The other is anisotropy of the radiation field coupled to the non-linear response of the medium to electromagnetic fields: this can occur either via photon-photon scattering (non-linear response of the vacuum); atomic hyperpolarizability (non-linear response of neutral atoms); or plasma delay (non-linear response of free electrons). The strongest effect comes from photon-photon scattering from recombination at a level of $sim 10^{-14}$ K. Our results are consistent with a negligible circular polarization of the CMB in comparison with the linear polarization or the sensitivity of current and near-term experiments.

قيم البحث

اقرأ أيضاً

We show that a non-minimal coupling of electromagnetism with background torsion can produce birefringence of the electromagnetic waves. This birefringence gives rise to a B-mode polarization of the CMB. From the bounds on B-mode from WMAP and BOOMERa nG data, one can put limits on the background torsion at $xi_{1}T_{1}=(-3.35 pm 2.65) times 10^{-22} GeV^{-1}$.
Most cosmic microwave background experiments observe the sky along circular or near-circular scans on the celestial sphere. For such experiments, we show that simple linear systems connect the Fourier spectra of temperature and polarization time-orde red data to the harmonic spectra of T, E and B on the sphere. We show how this can be used to estimate those spectra directly from data streams. In addition, the inversion of the linear system that connects Fourier spectra to angular power spectra offers a natural way to down-weight those modes of observation most contaminated by low-frequency noise, ground pickup, or fluctuations of atmospheric emission on large angular scale. This can be of interest for the analysis of future CMB data sets, as an alternative or in complement to other approaches that involve map-making as a first analysis step.
Cosmic Microwave Background experiments must achieve very accurate calibration of their polarization reference frame to avoid biasing the cosmological parameters. In particular, a wrong or inaccurate calibration might mimic the presence of a gravitat ional wave background, or a signal from cosmological birefringence, a phenomenon characteristic of several non-standard, symmetry breaking theories of electrodynamics that allow for textit{in vacuo} rotation if the polarization direction of the photon. Noteworthly, several authors have claimed that the BOOMERanG 2003 (B2K) published polarized power spectra of the CMB may hint at cosmological birefringence. Such analyses, however, do not take into account the reported calibration uncertainties of the BOOMERanG focal plane. We develop a formalism to include this effect and apply it to the BOOMERanG dataset, finding a cosmological rotation angle $alpha=-4.3^circpm4.1^circ$. We also investigate the expected performances of future space borne experiment, finding that an overall miscalibration larger then $1^circ$ for Planck and $0.2circ$ for EPIC, if not properly taken into account, will produce a bias on the constraints on the cosmological parameters and could misleadingly suggest the presence of a GW background.
The search for cosmic polarization rotation or birefringence in the CMB is well-motivated because it can provide powerful constraints on parity-violating new physics, such as axion-like particles. In this paper we point out that since the CMB polariz ation is produced at two very different redshifts - it is generated at both reionization and recombination - new parity-violating physics can generically rotate the polarization signals from these different sources by different amounts. We explore two implications of this. First, measurements of CMB birefringence are challenging because the effect is degenerate with a miscalibration of CMB polarization angles; however, by taking the difference of the reionization and recombination birefringence angles (measured from different CMB angular scales), we can obtain a cosmological signal that is immune to instrumental angle miscalibration. Second, we note that the combination with other methods for probing birefringence can give tomographic information, constraining the redshift origin of any physics producing birefringence. We forecast that the difference of the reionization and recombination birefringence angles can be competitively determined to within ~0.05 degrees for future CMB satellites such as LiteBIRD. Although much further work is needed, we argue that foreground mitigation for this measurement should be less challenging than for inflationary B-mode searches on similar scales due to larger signals and lower foregrounds.
Mild, unavoidable deviations from circular-symmetry of instrumental beams along with scan strategy can give rise to measurable Statistical Isotropy (SI) violation in Cosmic Microwave Background (CMB) experiments. If not accounted properly, this spuri ous signal can complicate the extraction of other SI violation signals (if any) in the data. However, estimation of this effect through exact numerical simulation is computationally intensive and time consuming. A generalized analytical formalism not only provides a quick way of estimating this signal, but also gives a detailed understanding connecting the leading beam anisotropy components to a measurable BipoSH characterisation of SI violation. In this paper, we provide an approximate generic analytical method for estimating the SI violation generated due to a non-circular (NC) beam and arbitrary scan strategy, in terms of the Bipolar Spherical Harmonic (BipoSH) spectra. Our analytical method can predict almost all the features introduced by a NC beam in a complex scan and thus reduces the need for extensive numerical simulation worth tens of thousands of CPU hours into minutes long calculations. As an illustrative example, we use WMAP beams and scanning strategy to demonstrate the easability, usability and efficiency of our method. We test all our analytical results against that from exact numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا