ﻻ يوجد ملخص باللغة العربية
Motivation: DNA data is transcribed into single-stranded RNA, which folds into specific molecular structures. In this paper we pose the question to what extent sequence- and structure-information correlate. We view this correlation as structural semantics of sequence data that allows for a different interpretation than conventional sequence alignment. Structural semantics could enable us to identify more general embedded patterns in DNA and RNA sequences. Results: We compute the partition function of sequences with respect to a fixed structure and connect this computation to the mutual information of a sequence-structure pair for RNA secondary structures. We present a Boltzmann sampler and obtain the a priori probability of specific sequence patterns. We present a detailed analysis for the three PDB-structures, 2JXV (hairpin), 2N3R (3-branch multi-loop) and 1EHZ (tRNA). We localize specific sequence patterns, contrast the energy spectrum of the Boltzmann sampled sequences versus those sequences that refold into the same structure and derive a criterion to identify native structures. We illustrate that there are multiple sequences in the partition function of a fixed structure, each having nearly the same mutual information, that are nevertheless poorly aligned. This indicates the possibility of the existence of relevant patterns embedded in the sequences that are not discoverable using alignments.
Polarons, introduced by Davydov to explain energy transport in $alpha$-helices, correspond to electrons localised on a few lattice sites because of their interaction with phonons. While the static polaron field configurations have been extensively st
Recent work indicates that twist-bend coupling plays an important role in DNA micromechanics. Here we investigate its effect on bent DNA. We provide an analytical solution of the minimum-energy shape of circular DNA, showing that twist-bend coupling
Loops are essential secondary structure elements in folded DNA and RNA molecules and proliferate close to the melting transition. Using a theory for nucleic acid secondary structures that accounts for the logarithmic entropy c ln m for a loop of leng
We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mecha
Random heteropolymers are a minimal description of biopolymers and can provide a theoretical framework to the investigate the formation of loops in biophysical experiments. A two--state model provides a consistent and robust way to study the scaling