ترغب بنشر مسار تعليمي؟ اضغط هنا

Bend-Induced Twist Waves and the Structure of Nucleosomal DNA

97   0   0.0 ( 0 )
 نشر من قبل Enrico Carlon
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work indicates that twist-bend coupling plays an important role in DNA micromechanics. Here we investigate its effect on bent DNA. We provide an analytical solution of the minimum-energy shape of circular DNA, showing that twist-bend coupling induces sinusoidal twist waves. This solution is in excellent agreement with both coarse-grained simulations of minicircles and nucleosomal DNA data, which is bent and wrapped around histone proteins in a superhelical conformation. Our analysis shows that the observed twist oscillation in nucleosomal DNA, so far attributed to the interaction with the histone proteins, is an intrinsic feature of free bent DNA, and should be observable in other protein-DNA complexes.



قيم البحث

اقرأ أيضاً

By combining analytical and numerical calculations, we investigate the minimal-energy shape of short DNA loops of approximately $100$ base pairs (bp). We show that in these loops the excess twist density oscillates as a response to an imposed bending stress, as recently found in DNA minicircles and observed in nucleosomal DNA. These twist oscillations, here referred to as twist waves, are due to the coupling between twist and bending deformations, which in turn originates from the asymmetry between DNA major and minor grooves. We introduce a simple analytical variational shape, that reproduces the exact loop energy up to the fourth significant digit, and is in very good agreement with shapes obtained from coarse-grained simulations. We, finally, analyze the loop dynamics at room temperature, and show that the twist waves are robust against thermal fluctuations. They perform a normal diffusive motion, whose origin is briefly discussed.
Recent magnetic tweezers experiments have reported systematic deviations of the twist response of double-stranded DNA from the predictions of the twistable worm-like chain model. Here we show, by means of analytical results and computer simulations, that these discrepancies can be resolved if a coupling between twist and bend is introduced. We obtain an estimate of 40 $pm$ 10 nm for the twist-bend coupling constant. Our simulations are in good agreement with high-resolution, magnetic-tweezers torque data. Although the existence of twist-bend coupling was predicted long ago (Marko and Siggia, Macromolecules 27, 981 (1994)), its effects on the mechanical properties of DNA have been so far largely unexplored. We expect that this coupling plays an important role in several aspects of DNA statics and dynamics.
We report a theoretical study of DNA flexibility and quantitatively predict the ring closure probability as a function of DNA contour length. Recent experimental studies show that the flexibility of short DNA fragments (as compared to the persistence length of DNA l_P~150 base pairs) cannot be described by the traditional worm-like chain (WLC) model, e.g., the observed ring closure probability is much higher than predicted. To explain these observations, DNA flexibility is investigated with explicit considerations of a new length scale l_D~10 base pairs, over which DNA local bend angles are correlated. In this correlated worm-like chain (C-WLC) model, a finite length correction term is analytically derived and the persistence length is found to be contour length dependent. While our model reduces to the traditional worm-like chain model when treating long DNA at length scales much larger than l_P, it predicts that DNA becomes much more flexible at shorter sizes, which helps explain recent cyclization measurements of short DNA fragments around 100 base pairs.
The simplest model of DNA mechanics describes the double helix as a continuous rod with twist and bend elasticity. Recent work has discussed the relevance of a little-studied coupling $G$ between twisting and bending, known to arise from the groove a symmetry of the DNA double helix. Here, the effect of $G$ on the statistical mechanics of long DNA molecules subject to applied forces and torques is investigated. We present a perturbative calculation of the effective torsional stiffness $C_text{eff}$ for small twist-bend coupling. We find that the bare $G$ is screened by thermal fluctuations, in the sense that the low-force, long-molecule effective free energy is that of a model with $G=0$, but with long-wavelength bending and twisting rigidities that are shifted by $G$-dependent amounts. Using results for torsional and bending rigidities for freely-fluctuating DNA, we show how our perturbative results can be extended to a non-perturbative regime. These results are in excellent agreement with numerical calculations for Monte Carlo triad and molecular dynamics oxDNA models, characterized by different degrees of coarse-graining, validating the perturbative and non-perturbative analyses. While our theory is in generally-good quantitative agreement with experiment, the predicted torsional stiffness does systematically deviate from experimental data, suggesting that there are as-yet-uncharacterized aspects of DNA twisting-stretching mechanics relevant to low-force, long-molecule mechanical response, which are not captured by widely-used coarse-grained models.
The pair interaction between two stiff parallel linear DNA molecules depends not only on the distance between their axes but on their azimuthal orientation. The positional and orientational order in columnar B-DNA assemblies in solution is investigat ed, based on the DNA-DNA electrostatic pair potential that takes into account DNA helical symmetry and the amount and distribution of adsorbed counterions. A phase diagram obtained by lattice sum calculations predicts a variety of positionally and azimuthally ordered phases and bundling transitions strongly depending on the counterion adsorption patterns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا