ﻻ يوجد ملخص باللغة العربية
Recent work indicates that twist-bend coupling plays an important role in DNA micromechanics. Here we investigate its effect on bent DNA. We provide an analytical solution of the minimum-energy shape of circular DNA, showing that twist-bend coupling induces sinusoidal twist waves. This solution is in excellent agreement with both coarse-grained simulations of minicircles and nucleosomal DNA data, which is bent and wrapped around histone proteins in a superhelical conformation. Our analysis shows that the observed twist oscillation in nucleosomal DNA, so far attributed to the interaction with the histone proteins, is an intrinsic feature of free bent DNA, and should be observable in other protein-DNA complexes.
By combining analytical and numerical calculations, we investigate the minimal-energy shape of short DNA loops of approximately $100$ base pairs (bp). We show that in these loops the excess twist density oscillates as a response to an imposed bending
Recent magnetic tweezers experiments have reported systematic deviations of the twist response of double-stranded DNA from the predictions of the twistable worm-like chain model. Here we show, by means of analytical results and computer simulations,
We report a theoretical study of DNA flexibility and quantitatively predict the ring closure probability as a function of DNA contour length. Recent experimental studies show that the flexibility of short DNA fragments (as compared to the persistence
The simplest model of DNA mechanics describes the double helix as a continuous rod with twist and bend elasticity. Recent work has discussed the relevance of a little-studied coupling $G$ between twisting and bending, known to arise from the groove a
The pair interaction between two stiff parallel linear DNA molecules depends not only on the distance between their axes but on their azimuthal orientation. The positional and orientational order in columnar B-DNA assemblies in solution is investigat