ترغب بنشر مسار تعليمي؟ اضغط هنا

Fusion and quasi-fission dynamics in nearly-symmetric reactions

69   0   0.0 ( 0 )
 نشر من قبل Ning Wang
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Some nearly-symmetric fusion reactions are systematically investigated with the improved quantum molecular dynamics (ImQMD) model. By introducing two-body inelastic scattering in the Fermi constraint procedure, the stability of an individual nucleus and the description of fusion cross sections at energies near the Coulomb barrier can be further improved. Simultaneously, the quasi-fission process in $^{154}$Sm+$^{160}$Gd is also investigated with the microscopic dynamics model for the first time. We find that at energies above the Bass barrier, the fusion probability is smaller than $10^{-5}$ for this reaction, and the nuclear contact-time is generally smaller than $1500$ fm/c. From the central collisions of Sm+Gd, the neutron-rich fragments such as $^{164,165}$Gd, $^{192}$W can be produced in the ImQMD simulations, which implies that the quasi-fission reaction could be an alternative way to synthesize new neutron-rich heavy nuclei.

قيم البحث

اقرأ أيضاً

402 - A. K. Nasirov 2008
The yields of evaporation residues, fusion-fission and quasifission fragments in the $^{48}$Ca+$^{144,154}$Sm and $^{16}$O+$^{186}$W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the $^{48}$Ca+$^{154}$Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in $^{48}$Ca+$^{154}$Sm at the large collision energies and the lack of quasifission fragments in the $^{48}$Ca+$^{144}$Sm reaction are explained by the overlap in mass-angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element $Z$=120 ($A$=302) show that the $^{54}$Cr+$^{248}$Cm reaction is preferable in comparison with the $^{58}$Fe+$^{244}$Pu and $^{64}$Ni+$^{238}$U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.
The mechanism of fusion hindrance, an effect observed in the reactions of cold, warm and hot fusion leading to production of the superheavy elements, is investigated. A systematics of transfermium production cross sections is used to determine fusion probabilities. Mechanism of fusion hindrance is described as a competition of fusion and quasi-fission. Available evaporation residue cross sections in the superheavy region are reproduced satisfactorily. Analysis of the measured capture cross sections is performed and a sudden disappearance of the capture cross sections is observed at low fusion probabilities. A dependence of the fusion hindrance on the asymmetry of the projectile-target system is investigated using the available data. The most promising pathways for further experiments are suggested.
161 - H. Q. Zhang 2009
The angular distributions of fission fragments for the $^{32}$S+$^{184}$W reaction at center-of-mass energies of 118.8, 123.1, 127.3, 131.5, 135.8, 141.1 and 144.4 MeV were measured. The experimental fission excitation function is obtained. The fragm ent angular anisotropy ($mathcal{A}_{rm exp}$) is found by extrapolating the each fission angular distributions. The measured fission cross sections of the $^{32}$S+$^{182,184}$W reaction are decomposed into fusion-fission, quasifission and fast fission contributions by the dinuclear system model. The total evaporation residue excitation function for the $^{32}$S+$^{184}$W reaction calculated in the framework of the advanced statistical model is in good agreement with the available experimental data up to about $E_{rm c.m.}approx 160$ MeV. The theoretical descriptions of the experimental capture excitation functions for both reactions and quantities $K_0^2$, $<ell^2>$ and $mathcal{A}_{rm exp}$ which characterize angular distributions of the fission products were performed by the same partial capture cross sections at the considered range of beam energy.
Energy dissipative processes play a key role in how quantum many-body systems dynamically evolve towards equilibrium. In closed quantum systems, such processes are attributed to the transfer of energy from collective motion to single-particle degrees of freedom; however, the quantum many-body dynamics of this evolutionary process are poorly understood. To explore energy dissipative phenomena and equilibration dynamics in one such system, an experimental investigation of deep-inelastic and fusion-fission outcomes in the $^{58}$Ni+$^{60}$Ni reaction has been carried out. Experimental outcomes have been compared to theoretical predictions using Time Dependent Hartree Fock and Time Dependent Random Phase Approximation approaches, which respectively incorporate one-body energy dissipation and fluctuations. Excellent quantitative agreement has been found between experiment and calculations, indicating that microscopic models incorporating one-body dissipation and fluctuations provide a potential tool for exploring dissipation in low-energy heavy ion collisions.
During the fission process, the nucleus deforms and elongates up to the two fragments inception and their final separation at scission deformation. The evolution of the nucleus energy with deformation is determined by the macroscopic properties of th e nucleus, and is also strongly influenced by the single-particle structure of the nucleus. The fission fragment distribution is a direct consequence of the deformation path the nucleus has encountered, and therefore is the most genuine experimental observation of the potential energy landscape of the deforming nucleus. Very asymmetric fusion-fission reactions at energy close to the Coulomb barrier, produce well-defined conditions of the compound nucleus formation, where processes such as quasi-fission, pre-equilibrium emission and incomplete fusion are negligible. In the same time, the excitation energy is sufficient to reduce significantly structural effects, and mostly the macroscopic part of the potential is responsible for the formation of the fission fragments. We use inverse kinematics combined with spectrometers to select and identify the fission fragments produced in $^{238}$U+$^{12}$C at a bombarding energy close to and well-above the Coulomb barrier. For the first time, the isotopic yields are measured over the complete atomic-number distribution, between Z=30 and Z=63. The experimental set-up also allows to identify transfer-induced reactions, which lead to low-energy fission where the nuclear shell structure shows a strong influence on the fission-fragment distributions. The resulting set of data gives the possibility to observe the fission fragment properties over a wide range of excitation energy, and they reveal the vanishing of the shell effects in the potential energy of the fissioning nucleus, as well as the influence of fission dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا