ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasifission and fusion-fission in massive nuclei reactions. Comparison of reactions leading to the Z=120 element

491   0   0.0 ( 0 )
 نشر من قبل Avazbek Nasirov
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف A. K. Nasirov




اسأل ChatGPT حول البحث

The yields of evaporation residues, fusion-fission and quasifission fragments in the $^{48}$Ca+$^{144,154}$Sm and $^{16}$O+$^{186}$W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the $^{48}$Ca+$^{154}$Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in $^{48}$Ca+$^{154}$Sm at the large collision energies and the lack of quasifission fragments in the $^{48}$Ca+$^{144}$Sm reaction are explained by the overlap in mass-angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element $Z$=120 ($A$=302) show that the $^{54}$Cr+$^{248}$Cm reaction is preferable in comparison with the $^{58}$Fe+$^{244}$Pu and $^{64}$Ni+$^{238}$U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.



قيم البحث

اقرأ أيضاً

214 - H. Q. Zhang 2009
The angular distributions of fission fragments for the $^{32}$S+$^{184}$W reaction at center-of-mass energies of 118.8, 123.1, 127.3, 131.5, 135.8, 141.1 and 144.4 MeV were measured. The experimental fission excitation function is obtained. The fragm ent angular anisotropy ($mathcal{A}_{rm exp}$) is found by extrapolating the each fission angular distributions. The measured fission cross sections of the $^{32}$S+$^{182,184}$W reaction are decomposed into fusion-fission, quasifission and fast fission contributions by the dinuclear system model. The total evaporation residue excitation function for the $^{32}$S+$^{184}$W reaction calculated in the framework of the advanced statistical model is in good agreement with the available experimental data up to about $E_{rm c.m.}approx 160$ MeV. The theoretical descriptions of the experimental capture excitation functions for both reactions and quantities $K_0^2$, $<ell^2>$ and $mathcal{A}_{rm exp}$ which characterize angular distributions of the fission products were performed by the same partial capture cross sections at the considered range of beam energy.
303 - S. Quaglioni 2012
Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In thi s respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.
The mechanism of fusion hindrance, an effect observed in the reactions of cold, warm and hot fusion leading to production of the superheavy elements, is investigated. A systematics of transfermium production cross sections is used to determine fusion probabilities. Mechanism of fusion hindrance is described as a competition of fusion and quasi-fission. Available evaporation residue cross sections in the superheavy region are reproduced satisfactorily. Analysis of the measured capture cross sections is performed and a sudden disappearance of the capture cross sections is observed at low fusion probabilities. A dependence of the fusion hindrance on the asymmetry of the projectile-target system is investigated using the available data. The most promising pathways for further experiments are suggested.
68 - Ning Wang , Kai Zhao , Zhuxia Li 2015
Some nearly-symmetric fusion reactions are systematically investigated with the improved quantum molecular dynamics (ImQMD) model. By introducing two-body inelastic scattering in the Fermi constraint procedure, the stability of an individual nucleus and the description of fusion cross sections at energies near the Coulomb barrier can be further improved. Simultaneously, the quasi-fission process in $^{154}$Sm+$^{160}$Gd is also investigated with the microscopic dynamics model for the first time. We find that at energies above the Bass barrier, the fusion probability is smaller than $10^{-5}$ for this reaction, and the nuclear contact-time is generally smaller than $1500$ fm/c. From the central collisions of Sm+Gd, the neutron-rich fragments such as $^{164,165}$Gd, $^{192}$W can be produced in the ImQMD simulations, which implies that the quasi-fission reaction could be an alternative way to synthesize new neutron-rich heavy nuclei.
Within the Time Dependent Hartree Fock (TDHF) approach, we investigate the impact of several ingredients of the nuclear effective interaction, such as incompressibility, symmetry energy, effective mass, derivative of the Lane potential and surface te rms on the exit channel (fusion vs quasifission) observed in the reaction $^{238}$U+$^{40}$Ca, close to the Coulomb barrier. Our results show that all the ingredients listed above contribute to the competition between fusion and quasifission processes, however the leading role in determining the outcome of the reaction is played by incompressibility, symmetry energy and the isoscalar coefficient of the surface term. This study unravels the complexity of the fusion and quasifission reaction dynamics and helps to understand the microscopic processes responsible for the final outcome of low energy heavy ion collisions in terms of relevant features of the nuclear effective interaction and associated equation of state (EoS).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا