ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisions in a dual-species magneto-optical trap of molecules and atoms

181   0   0.0 ( 0 )
 نشر من قبل Michael Tarbutt
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study inelastic collisions between CaF molecules and $^{87}$Rb atoms in a dual-species magneto-optical trap. The presence of atoms increases the loss rate of molecules from the trap. By measuring the loss rates and density distributions, we determine a collisional loss rate coefficient $k_{2} = (1.43 pm 0.29) times 10^{-10}$ cm$^{3}$/s at a temperature of 2.4 mK. We show that this is not substantially changed by light-induced collisions or by varying the populations of excited-state atoms and molecules. The observed loss rate is close to the universal rate expected in the presence of fast loss at short range, and can be explained by rotation-changing collisions in the ground electronic state.



قيم البحث

اقرأ أيضاً

We describe an apparatus designed to trap and cool a Yb and Cs mixture. The apparatus consists of a dual species effusive oven source, dual species Zeeman slower, magneto-optical traps in a single ultra-high vacuum science chamber, and the associated laser systems. The dual species Zeeman slower is used to load sequentially the two species into their respective traps. Its design is flexible and may be adapted for other experiments with different mixtures of atomic species. The apparatus provides excellent optical access and can apply large magnetic bias fields to the trapped atoms. The apparatus regularly produces 10${}^{8}$ Cs atoms at 13.3 $mu$K in an optical molasses, and 10${}^{9}$ Yb atoms cooled to 22 $mu$K in a narrowband magneto-optical trap.
141 - N. J. Fitch , L. P. Parazzoli , 2020
Measurements of interactions between cold molecules and ultracold atoms can allow for a detailed understanding of fundamental collision processes. These measurements can be done using various experimental geometries including where both species are i n a beam, where one species is trapped, or when both species are trapped. Simultaneous trapping offers significantly longer interaction times and an associated increased sensitivity to rare collision events. However, there are significant practical challenges associated with combining atom and molecule systems, which often have competing experimental requirements. Here, we describe in detail an experimental system that allows for studies of cold collisions between ultracold atoms and cold molecules in a dual trap, where the atoms and molecules are trapped using static magnetic and electric fields, respectively. As a demonstration of the systems capabilities, we study cold collisions between ammonia ($^{14}$ND$_{3}$ and $^{15}$ND$_{3}$) molecules and rubidium ($^{87}$Rb and $^{85}$Rb) atoms.
We present the properties of a magneto-optical trap (MOT) of CaF molecules. We study the process of loading the MOT from a decelerated buffer-gas-cooled beam, and how best to slow this molecular beam in order to capture the most molecules. We determi ne how the number of molecules, the photon scattering rate, the oscillation frequency, damping constant, temperature, cloud size and lifetime depend on the key parameters of the MOT, especially the intensity and detuning of the main cooling laser. We compare our results to analytical and numerical models, to the properties of standard atomic MOTs, and to MOTs of SrF molecules. We load up to $2 times 10^4$ molecules, and measure a maximum scattering rate of $2.5 times 10^6$ s$^{-1}$ per molecule, a maximum oscillation frequency of 100 Hz, a maximum damping constant of 500 s$^{-1}$, and a minimum MOT rms radius of 1.5 mm. A minimum temperature of 730 $mu$K is obtained by ramping down the laser intensity to low values. The lifetime, typically about 100 ms, is consistent with a leak out of the cooling cycle with a branching ratio of about $6 times 10^{-6}$. The MOT has a capture velocity of about 11 m/s.
We prepare mixtures of ultracold CaF molecules and Rb atoms in a magnetic trap and study their inelastic collisions. When the atoms are prepared in the spin-stretched state and the molecules in the spin-stretched component of the first rotationally e xcited state, they collide inelastically with a rate coefficient of $k_2 = (6.6 pm 1.5) times 10^{-11}$ cm$^{3}$/s at temperatures near 100~$mu$K. We attribute this to rotation-changing collisions. When the molecules are in the ground rotational state we see no inelastic loss and set an upper bound on the spin relaxation rate coefficient of $k_2 < 5.8 times 10^{-12}$ cm$^{3}$/s with 95% confidence. We compare these measurements to the results of a single-channel loss model based on quantum defect theory. The comparison suggests a short-range loss parameter close to unity for rotationally excited molecules, but below 0.04 for molecules in the rotational ground state.
173 - Armin Ridinger 2011
We present the design, implementation and characterization of a dual-species magneto-optical trap (MOT) for fermionic 6Li and 40K atoms with large atom numbers. The MOT simultaneously contains 5.2x10^9 6Li-atoms and 8.0x10^9 40K-atoms, which are cont inuously loaded by a Zeeman slower for 6Li and a 2D-MOT for 40K. The atom sources induce capture rates of 1.2x10^9 6Li-atoms/s and 1.4x10^9 40K-atoms/s. Trap losses due to light-induced interspecies collisions of ~65% were observed and could be minimized to ~10% by using low magnetic field gradients and low light powers in the repumping light of both atomic species. The described system represents the starting point for the production of a large-atom number quantum degenerate Fermi-Fermi mixture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا