ﻻ يوجد ملخص باللغة العربية
We have investigated the effects of ozone treatment on graphene by Raman scattering. Sequential ozone short-exposure cycles resulted in increasing the $p$ doping levels as inferred from the blue shift of the 2$D$ and $G$ peak frequencies, without introducing significant disorder. The two-phonon 2$D$ and 2$D$ Raman peak intensities show a significant decrease, while, on the contrary, the one-phonon G Raman peak intensity remains constant for the whole exposure process. The former reflects the dynamics of the photoexcited electrons (holes) and, specifically, the increase of the electron-electron scattering rate with doping. From the ratio of 2$D$ to 2$D$ intensities, which remains constant with doping, we could extract the ratio of electron-phonon coupling parameters. This ratio is found independent on the number of layers up to ten layers. Moreover, the rate of decrease of 2$D$ and 2$D$ intensities with doping was found to slowdown inversely proportional to the number of graphene layers, revealing the increase of the electron-electron collision probability.
Using electrical transport experiments and shot noise thermometry, we find strong evidence that supercollision scattering processes by flexural modes are the dominant electron-phonon energy transfer mechanism in high-quality, suspended graphene aroun
We present a magneto-Raman study on high-quality single-layer graphene grown by chemical vapor deposition (CVD) that is fully encapsulated in hexagonal boron nitride by a dry transfer technique. By analyzing the Raman D, G, and 2D peaks, we find that
Using electrical transport experiments and shot noise thermometry, we investigate electron-phonon heat transfer rate in a suspended bilayer graphene. Contrary to monolayer graphene with heat flow via three-body supercollision scattering, we find that
First-principles studies of the electron-phonon coupling in graphene predict a high coupling strength for the $sigma$ band with $lambda$ values of up to 0.9. Near the top of the $sigma$ band, $lambda$ is found to be $approx 0.7$. This value is consis
The Raman spectrum of the superconductor MgB$_{2}$ has been measured as a function of the Tc of the film. A striking correlation is observed between the $T_{c}$ onset and the frequency of the $E_{2g}$ mode. Analysis of the data with the McMillan form