ﻻ يوجد ملخص باللغة العربية
In this paper, first we introduce the notion of a quadratic Lie-Yamaguti algebra and show that the invariant bilinear form in a quadratic Lie-Yamaguti algebra induces an isomorphism between the adjoint representation and the coadjoint representation. Then we introduce the notions of relative Rota-Baxter operators on Lie-Yamaguti algebras and pre-Lie-Yamaguti algebras. We prove that a pre-Lie-Yamaguti algebra gives rise to a Lie-Yamaguti algebra naturally and a relative Rota-Baxter operator induces a pre-Lie-Yamaguti algebra. Finally we study symplectic structures on Lie-Yamaguti algebra, which give rise to relative Rota-Baxter operators as well as pre-Lie-Yamaguti algebras. As applications, we study phase spaces of Lie-Yamaguti algebras, and show that there is a one-to-one correspondence between phase spaces of Lie-Yamaguti algebras and Manin triples of pre-Lie-Yamaguti algebras.
Based on the differential graded Lie algebra controlling deformations of an $n$-Lie algebra with a representation (called an n-LieRep pair), we construct a Lie n-algebra, whose Maurer-Cartan elements characterize relative Rota-Baxter operators on n-L
In this paper, first we introduce the notion of a twisted Rota-Baxter operator on a 3-Lie algebra $g$ with a representation on $V$. We show that a twisted Rota-Baxter operator induces a 3-Lie algebra structure on $V$, which represents on $g$. By this
In this paper, we establish a local Lie theory for relative Rota-Baxter operators of weight $1$. First we recall the category of relative Rota-Baxter operators of weight $1$ on Lie algebras and construct a cohomology theory for them. We use the secon
In this paper, we introduce twisted relative Rota-Baxter operators on a Leibniz algebra as a generalization of twisted Poisson structures. We define the cohomology of a twisted relative Rota-Baxter operator $K$ as the Loday-Pirashvili cohomology of a
Given a Lie algebroid with a representation, we construct a graded Lie algebra whose Maurer-Cartan elements characterize relative Rota-Baxter operators on Lie algebroids. We give the cohomology of relative Rota-Baxter operators and study infinitesima