ﻻ يوجد ملخص باللغة العربية
We present a new construction of crossed-product duality for maximal coactions that uses Fischers work on maximalizations. Given a group $G$ and a coaction $(A,delta)$ we define a generalized fixed-point algebra as a certain subalgebra of $M(Artimes_{delta} G rtimes_{widehat{delta}} G)$, and recover the coaction via this double crossed product. Our goal is to formulate this duality in a category-theoretic context, and one advantage of our construction is that it breaks down into parts that are easy to handle in this regard. We first explain this for the category of nondegenerate *-homomorphisms, and then analogously for the category of $C^*$-correspondences. Also, we outline partial results for the outer category, studied previously by the authors.
A coaction d of a locally compact group G on a C*-algebra A is maximal if a certain natural map from A times_d G times_{d hat} G onto A otimes K(L^2(G)) is an isomorphism. All dual coactions on full crossed products by group actions are maximal; a di
We give the beginnings of the development of a theory of what we call R-coactions of a locally compact group on a $C^*$-algebra. These are the coactions taking values in the maximal tensor product, as originally proposed by Raeburn. We show that the
The residual finite-dimensionality of a $mathrm{C}^*$-algebra is known to be encoded in a topological property of its space of representations, stating that finite-dimensional representations should be dense therein. We extend this paradigm to genera
Ge asked the question whether $LF_{infty}$ can be embedded into $LF_2$ as a maximal subfactor. We answer it affirmatively by three different approaches, all containing the same key ingredient: the existence of maximal subgroups with infinite index. W
We study residually finite-dimensional (or RFD) operator algebras which may not be self-adjoint. An operator algebra may be RFD while simultaneously possessing completely isometric representations whose generating C*-algebra is not RFD. This has prov