ﻻ يوجد ملخص باللغة العربية
We study residually finite-dimensional (or RFD) operator algebras which may not be self-adjoint. An operator algebra may be RFD while simultaneously possessing completely isometric representations whose generating C*-algebra is not RFD. This has provided many hurdles in characterizing residual finite-dimensionality for operator algebras. To better understand the elusive behaviour, we explore the C*-covers of an operator algebra. First, we equate the collection of C*-covers with a complete lattice arising from the spectrum of the maximal C*-cover. This allows us to identify a largest RFD C*-cover whenever the underlying operator algebra is RFD. The largest RFD C*-cover is shown to be similar to the maximal C*-cover in several different facets and this provides supporting evidence to a previous query of whether an RFD operator algebra always possesses an RFD maximal C*-cover. In closing, we present a non self-adjoint version of Hadwins characterization of separable RFD C*-algebras.
The generalized state space $ S_{mathcal{H}}(mathcal{mathcal{A}})$ of all unital completely positive (UCP) maps on a unital $C^*$-algebra $mathcal{A}$ taking values in the algebra $mathcal{B}(mathcal{H})$ of all bounded operators on a Hilbert space $
I. Raeburn and J. Taylor have constructed continuous-trace C*-algebras with a prescribed Dixmier-Douady class, which also depend on the choice of an open cover of the spectrum. We study the asymptotic behavior of these algebras with respect to certai
We analyze the dichotomy amenable/paradoxical in the context of (discrete, countable, unital) semigroups and corresponding semigroup rings. We consider also F{o}lners type characterizations of amenability and give an example of a semigroup whose semi
Let $A$ be a unital operator algebra and let $alpha$ be an automorphism of $A$ that extends to a *-automorphism of its $ca$-envelope $cenv (A)$. In this paper we introduce the isometric semicrossed product $A times_{alpha}^{is} bbZ^+ $ and we show th
We study the structure of certain classes of homologically trivial locally C*-algebras. These include algebras with projective irreducible Hermitian A-modules, biprojective algebras, and superbiprojective algebras. We prove that, if A is a locally C*