ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing a scattering resonance in Rydberg molecules with a Bose-Einstein condensate

129   0   0.0 ( 0 )
 نشر من قبل Michael Schlagm\\\"uller
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present spectroscopy of a single Rydberg atom excited within a Bose-Einstein condensate. We not only observe the density shift as discovered by Amaldi and Segre in 1934, but a line shape which changes with the principal quantum number n. The line broadening depends precisely on the interaction potential energy curves of the Rydberg electron with the neutral atom perturbers. In particular, we show the relevance of the triplet p-wave shape resonance in the Rydberg electron-Rb(5S) scattering, which significantly modifies the interaction potential. With a peak density of 5.5x10^14 cm^-3, and therefore an inter-particle spacing of 1300 a0 within a Bose-Einstein condensate, the potential energy curves can be probed at these Rydberg ion - neutral atom separations. We present a simple microscopic model for the spectroscopic line shape by treating the atoms overlapped with the Rydberg orbit as zero-velocity, uncorrelated, point-like particles, with binding energies associated with their ion-neutral separation, and good agreement is found.



قيم البحث

اقرأ أيضاً

We have performed two-photon excitation via the 6P3/2 state to n=50-80 S or D Rydberg state in Bose-Einstein condensates of rubidium atoms. The Rydberg excitation was performed in a quartz cell, where electric fields generated by plates external to t he cell created electric charges on the cell walls. Avoiding accumulation of the charges and realizing good control over the applied electric field was obtained when the fields were applied only for a short time, typically a few microseconds. Rydberg excitations of the Bose-Einstein condensates loaded into quasi one-dimensional traps and in optical lattices have been investigated. The results for condensates expanded to different sizes in the one-dimensional trap agree well with the intuitive picture of a chain of Rydberg excitations controlled by the dipole-dipole interaction. The optical lattice applied along the one-dimensional geometry produces localized, collective Rydberg excitations controlled by the nearest-neighbour blockade.
The coupling of electrons to matter is at the heart of our understanding of material properties such as electrical conductivity. One of the most intriguing effects is that electron-phonon coupling can lead to the formation of a Cooper pair out of two repelling electrons, the basis for BCS superconductivity. Here we study the interaction of a single localized electron with a Bose-Einstein condensate (BEC) and show that it can excite phonons and eventually set the whole condensate into a collective oscillation. We find that the coupling is surprisingly strong as compared to ionic impurities due to the more favorable mass ratio. The electron is held in place by a single charged ionic core forming a Rydberg bound state. This Rydberg electron is described by a wavefunction extending to a size comparable to the dimensions of the BEC, namely up to 8 micrometers. In such a state, corresponding to a principal quantum number of n=202, the Rydberg electron is interacting with several tens of thousands of condensed atoms contained within its orbit. We observe surprisingly long lifetimes and finite size effects due to the electron exploring the wings of the BEC. Based on our results we anticipate future experiments on electron wavefunction imaging, investigation of phonon mediated coupling of single electrons, and applications in quantum optics.
Spontaneously crystalline ground states, called quantum crystals, of a trapped Rydberg-dressed Bose-Einstein condensate are numerically investigated. As a result described by a mean-field order parameter, such states simultaneously possess crystallin e and superfluid properties. A hexagonal droplet lattice is observed in a quasi-two-dimensional system when dressing interaction is sufficiently strong. Onset of these states is characterized by a drastic drop of the non-classical rotational inertia proposed by Leggett [Phys. Rev. Lett. 25, 1543 (1970)]. In addition, an AB stacking bilayer lattice can also be attained. Due to an anisotropic interaction possibly induced by an external electric field, transition from a hexagonal to a nearly square droplet lattice is also observed.
We investigate the dynamics of a Bose-Einstein condensate interacting with two non-interfering and counterpropagating modes of a ring resonator. Superfluid, supersolid and dynamic phases are identified experimentally and theoretically. The supersolid phase is obtained for sufficiently equal pump strengths for the two modes. In this regime we observe the emergence of a steady state with crystalline order, which spontaneously breaks the continuous translational symmetry of the system. The supersolidity of this state is demonstrated by the conservation of global phase coherence at the superfluid to supersolid phase transition. Above a critical pump asymmetry the system evolves into a dynamic run-away instability commonly known as collective atomic recoil lasing. We present a phase diagram and characterize the individual phases by comparing theoretical predictions with experimental observations.
271 - K. Henderson , H. Kelkar , T.C. Li 2006
We study the effect of different heating rates of a dilute Bose gas confined in a quasi-1D finite, leaky box. An optical kicked-rotor is used to transfer energy to the atoms while two repulsive optical beams are used to confine the atoms. The average energy of the atoms is localized after a large number of kicks and the system reaches a nonequilibrium steady state. A numerical simulation of the experimental data suggests that the localization is due to energetic atoms leaking over the barrier. Our data also indicates a correlation between collisions and the destruction of the Bose-Einstein condensate fraction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا