ترغب بنشر مسار تعليمي؟ اضغط هنا

New Ultraviolet Extinction Curves for Interstellar Dust in M31

143   0   0.0 ( 0 )
 نشر من قبل Geoffrey Clayton
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New low-resolution UV spectra of a sample of reddened OB stars in M31 were obtained with HST/STIS to study the wavelength dependence of interstellar extinction and the nature of the underlying dust grain populations. Extinction curves were constructed for four reddened sightlines in M31 paired with closely matching stellar atmosphere models. The new curves have a much higher S/N than previous studies. Direct measurements of N(H I) were made using the Ly$alpha$ absorption lines enabling gas-to-dust ratios to be calculated. The sightlines have a range in galactocentric distance of 5 to 14 kpc and represent dust from regions of different metallicities and gas-to-dust ratios. The metallicities sampled range from Solar to 1.5 Solar. The measured curves show similarity to those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy Method was used to investigate the dust composition and size distribution for the sightlines observed in this program finding that the extinction curves can be produced with the available carbon and silicon abundances if the metallicity is super-Solar.



قيم البحث

اقرأ أيضاً

Interstellar dust plays a central role in shaping the detailed structure of the interstellar medium, thus strongly influencing star formation and galaxy evolution. Dust extinction provides one of the main pillars of our understanding of interstellar dust while also often being one of the limiting factors when interpreting observations of distant objects, including resolved and unresolved galaxies. The ultraviolet (UV) and mid-infrared (MIR) wavelength regimes exhibit features of the main components of dust, carbonaceous and silicate materials, and therefore provide the most fruitful avenue for detailed extinction curve studies. Our current picture of extinction curves is strongly biased to nearby regions in the Milky Way. The small number of UV extinction curves measured in the Local Group (mainly Magellanic Clouds) clearly indicates that the range of dust properties is significantly broader than those inferred from the UV extinction characteristics of local regions of the Milky Way. Obtaining statistically significant samples of UV and MIR extinction measurements for all the dusty Local Group galaxies will provide, for the first time, a basis for understanding dust grains over a wide range of environments. Obtaining such observations requires sensitive medium-band UV, blue-optical, and mid-IR imaging and followup R ~ 1000 spectroscopy of thousands of sources. Such a census will revolutionize our understanding of the dependence of dust properties on local environment providing both an empirical description of the effects of dust on observations as well as strong constraints on dust grain and evolution models.
The large majority of extinction sight lines in our Galaxy obey a simple relation depending on one parameter, the total-to-selective extinction coefficient, Rv. Different values of Rv are able to match the whole extinction curve through different env ironments so characterizing normal extinction curves. In this paper more than sixty curves with large ultraviolet deviations from their best-fit one parameter curve are analyzed. These curves are fitted with dust models to shed light into the properties of the grains, the processes affecting them, and their relations with the environmental characteristics. The extinction curve models are reckoned by following recent prescriptions on grain size distributions able to describe one parameter curves for Rv values from 3.1 to 5.5. Such models, here extended down to Rv=2.0, allow us to compare the resulting properties of our deviating curves with the same as normal curves in a self-consistent framework, and thus to recover the relative trends overcoming the modeling uncertainties. Such curves represent the larger and homogeneous sample of anomalous curves studied so far with dust models. Results show that the ultraviolet deviations are driven by a larger amount of small grains than predicted for lines of sight where extinction depends on one parameter only. Moreover, the dust-to-gas ratios of anomalous curves are lower than the same values for no deviating lines of sight. Shocks and grain-grain collisions should both destroy dust grains, so reducing the amount of the dust trapped into the grains, and modify the size distribution of the dust, so increasing the small-to-large grain size ratio. Therefore, the extinction properties derived should arise along sight lines where shocks and high velocity flows perturb the physical state of the interstellar medium living their signature on the dust properties. (Abridged version)
We present optical and ultraviolet (UV) photometry and spectra of the very nearby and highly reddened supernova (SN) 2014J in M82 obtained with the Swift Ultra-Violet/Optical Telescope (UVOT). Comparison of the UVOT grism spectra of SN~2014J with Hub ble Space Telescope observations of SN2011fe or UVOT grism spectra of SN~2012fr are consistent with an extinction law with a low value of R_V~1.4. The high reddening causes the detected photon distribution in the broadband UV filters to have a much longer effective wavelength than for an unreddened SN. The light curve evolution is consistent with this shift and does not show a flattening due to photons being scattered back into the line of sight. The light curve shapes and color evolution are inconsistent with a contribution scattered into the line of sight by circumstellar dust. We conclude that most or all of the high reddening must come from interstellar dust. We show that even for a single dust composition, there is not a unique reddening law caused by circumstellar scattering. Rather, when considering scattering from a time-variable source, we confirm earlier studies that the reddening law is a function of the dust geometry, column density, and epoch. We also show how an assumed geometry of dust as a foreground sheet in mixed stellar/dust systems will lead to a higher inferred R_V. Rather than assuming the dust around SNe is peculiar, SNe may be useful probes of the interstellar reddening laws in other galaxies.
182 - Hui Dong 2016
We map the dust distribution in the central 180 (~680 pc) region of the M31 bulge, based on HST/WFC3 and ACS observations in ten bands from near-ultraviolet (2700 A) to near-infrared (1.5 micron). This large wavelength coverage gives us great leverag e to detect not only dense dusty clumps, but also diffuse dusty molecular gas. We fit a pixel-by-pixel spectral energy distributions to construct a high-dynamic-range extinction map with unparalleled angular resolution (~0.5 , i.e., ~2 pc) and sensitivity (the extinction uncertainty, delta A_V~0.05). In particular, the data allow to directly fit the fractions of starlight obscured by individual dusty clumps, and hence their radial distances in the bulge. Most of these clumps seem to be located in a thin plane, which is tilted with respect to the M31 disk and appears face-on. We convert the extinction map into a dust mass surface density map and compare it with that derived from the dust emission as observed by Herschel . The dust masses in these two maps are consistent with each other, except in the low-extinction regions, where the mass inferred from the extinction tends to be underestimated. Further, we use simulations to show that our method can be used to measure the masses of dusty clumps in Virgo cluster early-type galaxies to an accuracy within a factor of ~2.
201 - R. Siebenmorgen 2017
We present polarisation spectra of seven stars in the lines-of-sight towards the Sco OB1 association. Our spectra were obtained within the framework of the Large Interstellar Polarization Survey carried out with the FORS instrument of the ESO VLT. We have modelled the wavelength-dependence of extinction and linear polarisation with a dust model for the diffuse interstellar medium which consists of a mixture of particles with size ranging from the molecular domain of 0.5 nm up to 350 nm. We have included stochastically heated small dust grains with radii between 0.5 and 6 nm made of graphite and silicate, as well as polycyclic aromatic hydrocarbon molecules (PAHs), and we have assumed that larger particles are prolate spheroids made of amorphous carbon and silicate. Overall, a dust model with eight free parameters best reproduces the observations. Reducing the number of free parameters leads to results that are inconsistent with cosmic abundance constraints. We found that aligned silicates are the dominant contributor to the observed polarisation, and that the polarisation spectra are best-fit by a lower limit of the equivolume sphere radius of aligned grains of 70 - 200nm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا