ترغب بنشر مسار تعليمي؟ اضغط هنا

A long-period Cepheid variable in the starburst cluster VdBH222

91   0   0.0 ( 0 )
 نشر من قبل Simon Clark
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galactic starburst clusters play a twin role in astrophysics, serving as laboratories for the study of stellar physics and also delineating the structure and recent star formation history of the Milky Way. In order to exploit these opportunities we have undertaken a multi-epoch spectroscopic survey of the red supergiant dominated young massive clusters thought to be present at both near and far ends of the Galactic Bar. Significant spectroscopic variability suggestive of radial pulsations was found for the yellow supergiant VdBH 222 #505. Follow-up photometric investigations revealed modulation with a period of ~23.325d; both timescale and pulsational profile are consistent with a Cepheid classification. As a consequence #505 may be recognised as one of the longest period Galactic cluster Cepheids identified to date and hence of considerable use in constraining the bright end of the period/luminosity relation at solar metallicities. In conjunction with extant photometry we infer a distance of ~6kpc for VdBH222 and an age of ~20Myr. This results in a moderate reduction in both integrated cluster mass (~2x10^4Msun) and the initial stellar masses of the evolved cluster members (~10Msun). As such, VdBH222 becomes an excellent test-bed for studying the properties of some of the lowest mass stars observed to undergo type-II supernovae. Moreover, the distance is in tension with a location of VdBH 222 at the far end of the Galactic Bar. Instead a birthsite in the near 3kpc arm is suggested; providing compelling evidence of extensive recent star formation in a region of the inner Milky Way which has hitherto been thought to be devoid of such activity.

قيم البحث

اقرأ أيضاً

69 - David G. Turner 2014
A new compilation of UBV data for stars near the Cepheid S Vul incorporates BV observations from APASS and NOMAD to augment UBV observations published previously. A reddening analysis yields mean colour excesses and distance moduli for two main group s of stars in the field: the sparse cluster Turner 1 and an anonymous background group of BA stars. The former appears to be 1.07+-0.12 kpc distant and reddened by E(B-V)=0.45+-0.05, with an age of 10^9 yrs. The previously overlooked latter group is 3.48+-0.19 kpc distant and reddened by E(B-V)=0.78+-0.02, with an age of 1.3x10^7 yrs. Parameters inferred for S Vul under the assumption that it belongs to the distant group, as also argued by 2MASS data, are all consistent with similar results for other cluster Cepheids and Cepheid-like supergiants.
We document the presence of a few Cepheid and RR Lyrae variable stars with previously unrecognized characteristics. These stars exhibit the property of a period ratio of main pulsation divided by secondary pulsation P1/P2 very close to sqrt(2). Other stars of these types have period ratios which do not show clustering with a close association and a single remarkable non-harmonic number. Close examination reveals a deviation of multiples of a few times ~0.06% for these stars. This deviation seems to be present in discrete steps on the order of ~0.000390(4), indicating the possible presence of a sort of fine structure in this oscillation.
The dynamical structure of the atmosphere of Cepheids has been well studied in the optical. Several authors have found very interesting spectral features in the J band, but little data have been secured beyond 1.6 um. However, such observations can p robe different radial velocities and line asymmetry regimes, and are able to provide crucial insights into stellar physics. Our goal was to investigate the infrared line-forming region in the K-band domain, and its impact on the projection factor and the k-term of Cepheids. We secured CRIRES observations for the long-period Cepheid l Car, with a focus on the unblended spectral line NaI2208.969 nm. We measured the corresponding radial velocities (by using the first moment method) and the line asymmetries (by using the bi-Gaussian method). These quantities are compared to the HARPS visible spectra we previously obtained on l Car. The optical and infrared radial velocity curves show the same amplitude (only about 3% of difference), with a slight radial velocity shift of about 0.5 +/- 0.3 km s^-1 between the two curves. Around the minimum radius (phase ~ 0.9) the visible radial velocity curve is found in advance compared to the infrared one (phase lag), which is consistent with an infrared line forming higher in the atmosphere (compared to the visible line) and with a compression wave moving from the bottom to the top of the atmosphere during maximum outward velocity. The asymmetry of the K-band line is also found to be significantly different from that of the optical line.
Observations with the Karl G. Jansky Very Large Array at 46 GHz (7 mm) have been used to measure the size and shape of the radio photospheres of four long-period variable stars: R Leonis (R Leo), IRC+10216 (CW Leo), chi Cygni (chi Cyg), and W Hydrae (W Hya). The shapes of the stars range from nearly round to ellipticities of ~0.15. Comparisons with observations taken several years earlier show that the photospheric parameters (mean diameter, shape, and/or flux density) of each of the stars have changed over time. Evidence for brightness asymmetries and non-uniformities across the radio surfaces are also seen in the visibility domain and in images obtained using a sparse modeling image reconstruction technique. These trends may be explained as manifestations of large-scale irregular convective flows on the stellar surface, although effects from non-radial pulsations cannot be excluded. Our data also allow a new evaluation of the proper motion of IRC+10216. Our measurement is in agreement with previous values obtained from radio wavelength measurements, and we find no evidence of statistically significant astrometric perturbations from a binary companion.
The ultra-long period Cepheids (ULPCs) are classical Cepheids with pulsation periods exceeding $approx 80$ days. The intrinsic brightness of ULPCs are ~1 to ~3 mag brighter than their shorter period counterparts. This makes them attractive in future distance scale work to derive distances beyond the limit set by the shorter period Cepheids. We have initiated a program to search for ULPCs in M31, using the single-band data taken from the Palomar Transient Factory, and identified eight possible candidates. In this work, we presented the VI-band follow-up observations of these eight candidates. Based on our VI-band light curves of these candidates and their locations in the color-magnitude diagram and the Period-Wesenheit diagram, we verify two candidates as being truly ULPCs. The six other candidates are most likely other kinds of long-period variables. With the two confirmed M31 ULPCs, we tested the applicability of ULPCs in distance scale work by deriving the distance modulus of M31. It was found to be $mu_{M31,ULPC}=24.30pm0.76$ mag. The large error in the derived distance modulus, together with the large intrinsic dispersion of the Period-Wesenheit (PW) relation and the small number of ULPCs in a given host galaxy, means that the question of the suitability of ULPCs as standard candles is still open. Further work is needed to enlarge the sample of calibrating ULPCs and reduce the intrinsic dispersion of the PW relation before re-considering ULPCs as suitable distance indicators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا