ﻻ يوجد ملخص باللغة العربية
We document the presence of a few Cepheid and RR Lyrae variable stars with previously unrecognized characteristics. These stars exhibit the property of a period ratio of main pulsation divided by secondary pulsation P1/P2 very close to sqrt(2). Other stars of these types have period ratios which do not show clustering with a close association and a single remarkable non-harmonic number. Close examination reveals a deviation of multiples of a few times ~0.06% for these stars. This deviation seems to be present in discrete steps on the order of ~0.000390(4), indicating the possible presence of a sort of fine structure in this oscillation.
The origin of the conspicuous amplitude and phase modulation of the RR Lyrae pulsation - known as the Blazhko effect - is still a mystery after more than 100 years of its discovery. With the help of the Kepler space telescope we have revealed a new a
We analysed 30 RR Lyrae stars (RRLs) located in the Large Magellanic Cloud (LMC) globular cluster Reticulum that were observed in the 3.6 and 4.5 $mu$m passbands with the Infrared Array Camera (IRAC) on board of the Spitzer Space Telescope. We derive
Based on photometric data obtained between 1935 and 2017, $O-C$ diagrams were built for 22 RR Lyrae stars in the globular cluster NGC 6171, leading to the discovery of secular period changes in 4 variables for which we have calculated their period ch
The period of pulsation and the structure of the light curve for Cepheid and RR Lyrae variables depend on the fundamental parameters of the star: mass, radius, luminosity, and effective temperature. Here we train artificial neural networks on theoret
The Optical Gravitational Lensing Experiment (OGLE) is a great source of top-quality photometry of classical pulsators. Collection of variable stars from the fourth part of the project contains more than 38 000 RR Lyrae stars. These stars pulsate mos