ﻻ يوجد ملخص باللغة العربية
A finite dimensional quantum system for which the quantum chaos conjecture applies has eigenstates, which show the same statistical properties than the column vectors of random orthogonal or unitary matrices. Here, we consider the different probabilities for obtaining a specific outcome in a projective measurement, provided the system is in one of its eigenstates. We then give analytic expressions for the joint probability density for these probabilities, with respect to the ensemble of random matrices. In the case of the unitary group, our results can be applied, also, to the phenomenon of universal conductance fluctuations, where the same mathematical quantities describe partial conductances in a two-terminal mesoscopic scattering problem with a finite number of modes in each terminal.
We use a noncommutative generalization of Fourier analysis to define a broad class of pseudo-probability representations, which includes the known bosonic and discrete Wigner functions. We characterize the groups of quantum unitary operations which c
The probability distribution of a function of a subsystem conditioned on the value of the function of the whole, in the limit when the ratio of their values goes to zero, has a limit law: It equals the unconditioned marginal probability distribution
We calculate analytically, for finite-size matrices, joint probability densities of ratios of level spacings in ensembles of random matrices characterized by their associated confining potential. We focus on the ratios of two spacings between three c
We systematically study the first three terms in the asymptotic expansions of the moments of the transmission eigenvalues and proper delay times as the number of quantum channels n in the leads goes to infinity. The computations are based on the assu
Quantum walks and random walks bear similarities and divergences. One of the most remarkable disparities affects the probability of finding the particle at a given location: typically, almost a flat function in the first case and a bell-shaped one in