ﻻ يوجد ملخص باللغة العربية
Quantum walks and random walks bear similarities and divergences. One of the most remarkable disparities affects the probability of finding the particle at a given location: typically, almost a flat function in the first case and a bell-shaped one in the second case. Here I show how one can impose any desired stochastic behavior (compatible with the continuity equation for the probability function) on both systems by the appropriate choice of time- and site-dependent coins. This implies, in particular, that one can devise quantum walks that show diffusive spreading without loosing coherence, as well as random walks that exhibit the characteristic fast propagation of a quantum particle driven by a Hadamard coin.
One-parameter family of discrete-time quantum-walk models on the square lattice, which includes the Grover-walk model as a special case, is analytically studied. Convergence in the long-time limit $t to infty$ of all joint moments of two components o
In this paper we focus our attention on a particle that follows a unidirectional quantum walk, an alternative version of the nowadays widespread discrete-time quantum walk on a line. Here the walker at each time step can either remain in place or mov
We calculate analytically, for finite-size matrices, joint probability densities of ratios of level spacings in ensembles of random matrices characterized by their associated confining potential. We focus on the ratios of two spacings between three c
Quantum walks constitute important tools in different applications, especially in quantum algorithms. To a great extent their usefulness is due to unusual diffusive features, allowing much faster spreading than their classical counterparts. Such beha
The discrete-time quantum walk (QW) is determined by a unitary matrix whose component is complex number. Konno (2015) extended the QW to a walk whose component is quaternion.We call this model quaternionic quantum walk (QQW). The probability distribu