ﻻ يوجد ملخص باللغة العربية
The interaction of the nonlinear internal waves with a nonuniform current with a specific form, characteristic for the equatorial undercurrent, is studied. The current has no vorticity in the layer, where the internal wave motion takes place. We show that the nonzero vorticity that might be occuring in other layers of the current does not affect the wave motion. The equations of motion are formulated as a Hamiltonian system.
We revisit the problem on the inner structure of shock waves in simple gases modelized by the Boltzmann kinetic equation. In cite{pomeau1987shock}, a self-similarity approach was proposed for infinite total cross section resulting from a power law in
The universal power law for the spectrum of one-dimensional breaking Riemann waves is justified for the simple wave equation. The spectrum of spatial amplitudes at the breaking time $t = t_b$ has an asymptotic decay of $k^{-4/3}$, with corresponding
Due to the limited cell resolution in the representation of flow variables, a piecewise continuous initial reconstruction with discontinuous jump at a cell interface is usually used in modern computational fluid dynamics methods. Starting from the di
The inconsistency between the time-reversible Liouville equation and time-irreversible Boltzmann equation has been pointed out long ago by Loschmidt. To avoid Loschmidts objection, here we propose a new dynamical system to model the motion of atoms o
The purpose of the present paper is to derive a partial differential equation (PDE) for the single-time single-point probability density function (PDF) of the velocity field of a turbulent flow. The PDF PDE is a highly non-linear parabolic-transport