ﻻ يوجد ملخص باللغة العربية
We revisit the problem on the inner structure of shock waves in simple gases modelized by the Boltzmann kinetic equation. In cite{pomeau1987shock}, a self-similarity approach was proposed for infinite total cross section resulting from a power law interaction, but this self-similar form does not have finite energy. Motivated by the work of Pomeau, Bobylev and Cercignani started the rigorous study of the solutions of the spatial homogeneous Boltzmann equation, focusing on those which do not have finite energy cite{bobylev2002self,bobylev2003eternal}. In the present work, we provide a correction to the self-similar form, so that the solutions are more physically sound in the sense that the energy is no longer infinite and that the perturbation brought by the shock does not grow at large distances of it on the cold side in the soft potential case.
The interaction of the nonlinear internal waves with a nonuniform current with a specific form, characteristic for the equatorial undercurrent, is studied. The current has no vorticity in the layer, where the internal wave motion takes place. We show
In the present manuscript we consider the Boltzmann equation that models a polyatomic gas by introducing one additional continuous variable, referred to as microscopic internal energy. We establish existence and uniqueness theory in the space homogen
The universal power law for the spectrum of one-dimensional breaking Riemann waves is justified for the simple wave equation. The spectrum of spatial amplitudes at the breaking time $t = t_b$ has an asymptotic decay of $k^{-4/3}$, with corresponding
Recently F. Huang [Commun. Theor. Phys. V.42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. V.49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forcing and dissipation on the beta-pl
We study the asymptotics of solutions of the Boltzmann equation describing the kinetic limit of a lattice of classical interacting anharmonic oscillators. We prove that, if the initial condition is a small perturbation of an equilibrium state, and va