ﻻ يوجد ملخص باللغة العربية
Antiferromagnetic order at $T_{mathrm{N}} = 23$ K has been identified in Mn(III)F(salen), salen = H$_{14}$C$_{16}$N$_2$O$_2$, an $S = 2$ linear-chain system. Using single crystals, specific heat studies performed in magnetic fields up to 9 T revealed the presence of a field-independent cusp at the same temperature where $^1$H NMR studies conducted at 42 MHz observed dramatic changes in the spin-lattice relaxation time, $T_1$, and in the linewidths. Neutron powder diffraction performed on a randomly-oriented, as-grown, deuterated (12 of 14 H replaced by d) sample of 2.2 g at 10 K and 100 K did not resolve the magnetic ordering, while low-field (less than 0.1 T) magnetic susceptibility studies of single crystals and randomly-arranged microcrystalline samples reveal subtle features associated with the transition. Ensemble these data suggest a magnetic signature previously detected at 3.8 T for temperatures below nominally 500 mK is a spin-flop field of small net moments arising from alternating subsets of three Mn spins along the chains.
The question of structural disorder and its effects on magnetism is relevant to a number of spin liquid candidate materials. Although commonly thought of as a route to spin glass behavior, here we describe a system in which the structural disorder re
Heavy fermion compounds consisting of two or more inequivalent local moment sites per unit cell have been a promising platform of investigating the interplay between distinct Kondo screenings that is absent in the conventional systems containing only
In this paper we report low-temperature magnetic properties of the rare-earth perovskite material YbAlO$_3$. Results of elastic and inelastic neutron scattering experiment, magnetization measurements along with the crystalline electrical field (CEF)
Nuclear magnetic resonance (NMR), neutron diffaction (ND), x-ray diffraction, magnetic susceptibility and specific heat measurements on the frustrated A-site spinel CoAl2O4 compound reveal a collinear antiferromagnetic ordering below Tn = 9.8(2) K. A
The ground state of $lambda$-(BEDT-TTF)$_2$GaCl$_4$, which has the same structure as the organic superconductor $lambda$-(BETS)$_2$GaCl$_4$, was investigated by magnetic susceptibility and $^{13}$C NMR measurements. The temperature dependence of the