ﻻ يوجد ملخص باللغة العربية
A sensation of fullness in the bladder is a regular experience, yet the mechanisms that act to generate this sensation remain poorly understood. This is an important issue because of the clinical problems that can result when this system does not function properly. The aim of the study group activity was to develop mathematical models that describe the mechanics of bladder filling, and how stretch modulates the firing rate of afferent nerves. Several models were developed, which were qualitatively consistent with experimental data obtained from a mouse model.
We apply three optical coherence tomography (OCT) image analysis techniques to extract morphometric information from OCT images obtained on peripheral nerves of rat. The accuracy of each technique is evaluated against histological measurements accura
A simplified mathematical model of oral hydrocortisone delivery in adrenal insufficiency is described; the model is based on three components (gastric hydrocortisone, free serum cortisol and bound serum cortisol) and is formulated in terms of linear
Maintenance of epidermal thickness is critical to the barrier function of the skin. Decreased tissue thickness, specifically in the stratum corneum (the outermost layer of the tissue), causes discomfort and inflammation, and is related to several sev
We present a mathematical study of the emergence of phenotypic heterogeneity in vascularised tumours. Our study is based on formal asymptotic analysis and numerical simulations of a system of non-local parabolic equations that describes the phenotypi
The CVS is composed of numerous interacting and dynamically regulated physiological subsystems which each generate measurable periodic components such that the CVS can itself be presented as a system of weakly coupled oscillators. The interactions be