ﻻ يوجد ملخص باللغة العربية
Maintenance of epidermal thickness is critical to the barrier function of the skin. Decreased tissue thickness, specifically in the stratum corneum (the outermost layer of the tissue), causes discomfort and inflammation, and is related to several severe diseases of the tissue. In order to maintain both stratum corneum thickness and overall tissue thickness it is necessary for the system to balance cell proliferation and cell loss. Cell proliferation in the epidermis occurs in the basal layer and causes constant upwards movement in the tissue. Cell loss occurs when dead cells at the top of the tissue are lost to the environment through a process called desquamation. Desquamation is thought to occur through a gradual reduction in adhesion between cells, due to the cleaving of adhesion proteins by enzymes, in the stratum corneum. In this paper we will investigate combining a (mass action) subcellular model of desquamation with a three dimensional (cell centre based) multicellular model of the interfollicular epidermis to better understand maintenance of epidermal thickness. These investigations show that hypothesised biological models for the degradation of cell-cell adhesion from the literature are able to provide a consistent rate of cell loss in the multicellular model. This loss balances proliferation, and hence maintains a homeostatic tissue thickness. Moreover, we find that multiple proliferative cell populations in the basal layer can be represented by a single proliferative cell population, simplifying investigations with this model. The model is used to investigate a disorder (Netherton Syndrome) which disrupts desquamation. The model shows how biochemical changes can cause disruptions to the tissue, resulting in a reduced tissue thickness and consequently diminishing the protective role of the tissue. A hypothetical treatment result is also investigated. [ABR]
Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases.
We present a mathematical study of the emergence of phenotypic heterogeneity in vascularised tumours. Our study is based on formal asymptotic analysis and numerical simulations of a system of non-local parabolic equations that describes the phenotypi
The CVS is composed of numerous interacting and dynamically regulated physiological subsystems which each generate measurable periodic components such that the CVS can itself be presented as a system of weakly coupled oscillators. The interactions be
A multiscale mathematical model is presented to describe the de novo granulation and the evolution of multispecies granular biofilms within a continuous reactor. The granule is modelled as a spherical free boundary domain with radial symmetry. The eq
When a blood vessel ruptures or gets inflamed, the human body responds by rapidly forming a clot to restrict the loss of blood. Platelets aggregation at the injury site of the blood vessel occurring via platelet-platelet adhesion, tethering and rolli