ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-scale Artificial Neural Network: MapReduce-based Deep Learning

322   0   0.0 ( 0 )
 نشر من قبل Kairan Sun
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Faced with continuously increasing scale of data, original back-propagation neural network based machine learning algorithm presents two non-trivial challenges: huge amount of data makes it difficult to maintain both efficiency and accuracy; redundant data aggravates the system workload. This project is mainly focused on the solution to the issues above, combining deep learning algorithm with cloud computing platform to deal with large-scale data. A MapReduce-based handwriting character recognizer will be designed in this project to verify the efficiency improvement this mechanism will achieve on training and practical large-scale data. Careful discussion and experiment will be developed to illustrate how deep learning algorithm works to train handwritten digits data, how MapReduce is implemented on deep learning neural network, and why this combination accelerates computation. Besides performance, the scalability and robustness will be mentioned in this report as well. Our system comes with two demonstration software that visually illustrates our handwritten digit recognition/encoding application.

قيم البحث

اقرأ أيضاً

This paper presents GPU performance optimization and scaling results for inference models of the Sparse Deep Neural Network Challenge 2020. Demands for network quality have increased rapidly, pushing the size and thus the memory requirements of many neural networks beyond the capacity of available accelerators. Sparse deep neural networks (SpDNN) have shown promise for reining in the memory footprint of large neural networks. However, there is room for improvement in implementing SpDNN operations on GPUs. This work presents optimized sparse matrix multiplication kernels fused with the ReLU function. The optimized kernels reuse input feature maps from the shared memory and sparse weights from registers. For multi-GPU parallelism, our SpDNN implementation duplicates weights and statically partition the feature maps across GPUs. Results for the challenge benchmarks show that the proposed kernel design and multi-GPU parallelization achieve up to 180 tera-edges per second inference throughput. These results are up to 4.3x faster for a single GPU and an order of magnitude faster at full scale than those of the champion of the 2019 Sparse Deep Neural Network Graph Challenge for the same generation of NVIDIA V100 GPUs. Using the same implementation, we also show single-GPU throughput on NVIDIA A100 is 2.37$times$ faster than V100.
Scale of data and scale of computation infrastructures together enable the current deep learning renaissance. However, training large-scale deep architectures demands both algorithmic improvement and careful system configuration. In this paper, we fo cus on employing the system approach to speed up large-scale training. Via lessons learned from our routine benchmarking effort, we first identify bottlenecks and overheads that hinter data parallelism. We then devise guidelines that help practitioners to configure an effective system and fine-tune parameters to achieve desired speedup. Specifically, we develop a procedure for setting minibatch size and choosing computation algorithms. We also derive lemmas for determining the quantity of key components such as the number of GPUs and parameter servers. Experiments and examples show that these guidelines help effectively speed up large-scale deep learning training.
Modern GPU datacenters are critical for delivering Deep Learning (DL) models and services in both the research community and industry. When operating a datacenter, optimization of resource scheduling and management can bring significant financial ben efits. Achieving this goal requires a deep understanding of the job features and user behaviors. We present a comprehensive study about the characteristics of DL jobs and resource management. First, we perform a large-scale analysis of real-world job traces from SenseTime. We uncover some interesting conclusions from the perspectives of clusters, jobs and users, which can facilitate the cluster system designs. Second, we introduce a general-purpose framework, which manages resources based on historical data. As case studies, we design: a Quasi-Shortest-Service-First scheduling service, which can minimize the cluster-wide average job completion time by up to 6.5x; and a Cluster Energy Saving service, which improves overall cluster utilization by up to 13%.
Extreme learning machine (ELM), which can be viewed as a variant of Random Vector Functional Link (RVFL) network without the input-output direct connections, has been extensively used to create multi-layer (deep) neural networks. Such networks employ randomization based autoencoders (AE) for unsupervised feature extraction followed by an ELM classifier for final decision making. Each randomization based AE acts as an independent feature extractor and a deep network is obtained by stacking several such AEs. Inspired by the better performance of RVFL over ELM, in this paper, we propose several deep RVFL variants by utilizing the framework of stacked autoencoders. Specifically, we introduce direct connections (feature reuse) from preceding layers to the fore layers of the network as in the original RVFL network. Such connections help to regularize the randomization and also reduce the model complexity. Furthermore, we also introduce denoising criterion, recovering clean inputs from their corrupt
Straggler task detection is one of the main challenges in applying MapReduce for parallelizing and distributing large-scale data processing. It is defined as detecting running tasks on weak nodes. Considering two stages in the Map phase copy, combine and three stages of Reduce shuffle, sort and reduce, the total execution time is the total sum of the execution time of these five stages. Estimating the correct execution time in each stage that results in correct total execution time is the primary purpose of this paper. The proposed method is based on the application of a backpropagation Neural Network NN on the Hadoop for the detection of straggler tasks, to estimate the remaining execution time of tasks that is very important in straggler task detection. Results achieved have been compared with popular algorithms in this domain such as LATE, ESAMR and the real remaining time for WordCount and Sort benchmarks, and shown able to detect straggler tasks and estimate execution time accurately. Besides, it supports to accelerate task execution time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا