ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining short-range spin-dependent forces with polarized helium 3 at the Laue-Langevin Institute

233   0   0.0 ( 0 )
 نشر من قبل Mathieu Guigue Mr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have searched for a short-range spin-dependent interaction mediated by a hypothetical light scalar boson with CP-violating couplings to the neutron using the spin relaxation of hyperpolarized $^3$He. The walls of the $^3$He cell would generate a depolarizing pseudomagnetic field.



قيم البحث

اقرأ أيضاً

We have searched for a short-range spin-dependent interaction using the spin relaxation of hyperpolarized $^3$He. Such a new interaction would be mediated by a hypothetical light scalar boson with CP-violating couplings to the neutron. The walls of t he $^3$He cell would generate a pseudomagnetic field and induce an extra depolarization channel. We did not see any anomalous spin relaxation and we report the limit for interaction ranges $lambda$ between $1$ and $100~rm{mu m}$: $g_sg_p lambda ^2 leq 2.6times 10^{-28}~mathrm{m^2}, ( 95~%, mathrm{C.L.})$, where $g_s$($g_p$) are the (pseudo)scalar coupling constant, improving the previous best limit by 1 order of magnitude.
Measuring the depolarization rate of a $^3$He hyperpolarized gas is a sensitive method to probe hypothetical short-range spin-dependent forces. A dedicated experiment is being set up at the Institute Laue Langevin in Grenoble to improve the sensitivi ty. We presented the status of the experiment at the 10th PATRAS Workshop on Axions, WIMPs and WISPs.
136 - W. Zheng , H. Gao , B. Lalremruata 2012
We propose a new method to detect short-range textit{P-} and textit{T-} violating interactions between nucleons, based on measuring the precession frequency shift of polarized $^3$He nuclei in the presence of an unpolarized mass. To maximize the sens itivity, a high-pressure $^3$He cell with thin glass windows (250 $rmmu m$) is used to minimize the distance between the mass and $^3$He. The magnetic field fluctuation is suppressed by using the $^3$He gas in a different region of the cell as a magnetometer. Systematic uncertainties from the magnetic properties of the mass are suppressed by flipping both the magnetic field and spin directions. Without any magnetic shielding, our result has already reached the sensitivity of the current best limit. With improvement in uniformity and stability of the field, we can further improve the sensitivity by two orders of magnitude over the force range from $10^{-4}-10^{-2}$ m.
250 - Bernhard Lauss 2012
Ultracold neutrons (UCN) can be stored in suitable bottles and observed for several hundreds of seconds. Therefore UCN can be used to study in detail the fundamental properties of the neutron. A new user facility providing ultracold neutrons for fund amental physics research has been constructed at the Paul Scherrer Institute, the PSI UCN source. Assembly of the facility finished in December 2010 with the first production of ultracold neutrons. Operation approval was received in June 2011. We give an overview of the source and the status at startup.
We investigate the sensitivities of searches for exotic spin-dependent interactions between the polarized nuclear spins of $^3$He and the particles of unpolarized or polarized solid-state masses using the frequency method and the resonance method. In the frequency method, the spin-dependent interactions act as an effective static magnetic field, causing the frequency shift to the spin precession of $^{3}$He. In the resonance method, proposed by Arvanitaki and Geraci [Phys. Rev. Lett. 113, 161801 (2014)] for the significant improvement of the experimental sensitivities on the spin-dependent interactions, the mass movement is modulated at the Larmor frequency of $^3$He. This results in the modulating spin-dependent interactions inducing an effective oscillatory magnetic field, which can tilt the $^3$He spins, similarly as an oscillatory magnetic field in nuclear magnetic resonance. We estimate the sensitivities of the searches using a room-temperature $^3$He target for its extremely long relaxation time. New limits on the coupling strengths of the spin-dependent interactions can be set in the interaction length range below $10^{-1}$ m.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا