ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Spin-Dependent Short-Range Force Using Optically Polarized $^3$He Gas

76   0   0.0 ( 0 )
 نشر من قبل Wangzhi Zheng
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new method to detect short-range textit{P-} and textit{T-} violating interactions between nucleons, based on measuring the precession frequency shift of polarized $^3$He nuclei in the presence of an unpolarized mass. To maximize the sensitivity, a high-pressure $^3$He cell with thin glass windows (250 $rmmu m$) is used to minimize the distance between the mass and $^3$He. The magnetic field fluctuation is suppressed by using the $^3$He gas in a different region of the cell as a magnetometer. Systematic uncertainties from the magnetic properties of the mass are suppressed by flipping both the magnetic field and spin directions. Without any magnetic shielding, our result has already reached the sensitivity of the current best limit. With improvement in uniformity and stability of the field, we can further improve the sensitivity by two orders of magnitude over the force range from $10^{-4}-10^{-2}$ m.

قيم البحث

اقرأ أيضاً

Measuring the depolarization rate of a $^3$He hyperpolarized gas is a sensitive method to probe hypothetical short-range spin-dependent forces. A dedicated experiment is being set up at the Institute Laue Langevin in Grenoble to improve the sensitivi ty. We presented the status of the experiment at the 10th PATRAS Workshop on Axions, WIMPs and WISPs.
We have searched for a short-range spin-dependent interaction using the spin relaxation of hyperpolarized $^3$He. Such a new interaction would be mediated by a hypothetical light scalar boson with CP-violating couplings to the neutron. The walls of t he $^3$He cell would generate a pseudomagnetic field and induce an extra depolarization channel. We did not see any anomalous spin relaxation and we report the limit for interaction ranges $lambda$ between $1$ and $100~rm{mu m}$: $g_sg_p lambda ^2 leq 2.6times 10^{-28}~mathrm{m^2}, ( 95~%, mathrm{C.L.})$, where $g_s$($g_p$) are the (pseudo)scalar coupling constant, improving the previous best limit by 1 order of magnitude.
198 - H. Yan , G.A. Sun , S.M. Peng 2014
We have constrained possible new interactions which produce nonrelativistic potentials between polarized neutrons and unpolarized matter proportional to $alphavec{sigma}cdotvec{v}$ where $vec{sigma}$ is the neutron spin and $vec{v}$ is the relative v elocity. We use existing data from laboratory measurements on the very long $T_{1}$ and $T_{2}$ spin relaxation times of polarized $^{3}$He gas in glass cells.Using the best available measured $T_{2}$ of polarized $^{3}$He gas atoms as the polarized source and the earth as an unpolarized source, we obtain constraints on two new interactions. We present a new experimental upper bound on possible vector-axial-vector($V_{VA}$) type interactions for ranges between $1sim10^{8}$m. In combination with previous results, we set the most stringent experiment limits on $g_{V}g_{A}$ ranging from $simmu$m to $sim10^{8}$m. We also report what is to our knowledge the first experimental upper limit on the possible torsion fields induced by the earth on its surface. Dedicated experiments could further improve these bounds by a factor of $sim100$. Our method of analysis also makes it possible to probe many velocity dependent interactions which depend on the spins of both neutrons and other particles which have never been searched for before experimentally.
We investigate the sensitivities of searches for exotic spin-dependent interactions between the polarized nuclear spins of $^3$He and the particles of unpolarized or polarized solid-state masses using the frequency method and the resonance method. In the frequency method, the spin-dependent interactions act as an effective static magnetic field, causing the frequency shift to the spin precession of $^{3}$He. In the resonance method, proposed by Arvanitaki and Geraci [Phys. Rev. Lett. 113, 161801 (2014)] for the significant improvement of the experimental sensitivities on the spin-dependent interactions, the mass movement is modulated at the Larmor frequency of $^3$He. This results in the modulating spin-dependent interactions inducing an effective oscillatory magnetic field, which can tilt the $^3$He spins, similarly as an oscillatory magnetic field in nuclear magnetic resonance. We estimate the sensitivities of the searches using a room-temperature $^3$He target for its extremely long relaxation time. New limits on the coupling strengths of the spin-dependent interactions can be set in the interaction length range below $10^{-1}$ m.
This article reviews the physics and technology of producing large quantities of highly spin-polarized, or hyperpolarized, $^3$He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping, and surveys applications of polariz ed $^3$He. Several recent developments are emphasized for each method. For SEOP, the use of spectrally narrowed lasers and Rb/K mixtures has substantially increased the achievable polarization and polarizing rate. MEOP in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and has led to the observation of a light-induced relaxation mechanism. In both methods the increased capabilities have led to more extensive study and modeling of the basic underlying physics. New unexplained dependences of relaxation on temperature and magnetic field have been discovered in SEOP cells. Applications of both methods are also reviewed, including targets for charged particle and photon beams, neutron spin filters, magnetic resonance imaging, and precision measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا