ترغب بنشر مسار تعليمي؟ اضغط هنا

The Deuterium Fraction in Massive Starless Cores and Dynamical Implications

319   0   0.0 ( 0 )
 نشر من قبل Shuo Kong
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Shuo Kong




اسأل ChatGPT حول البحث

We study deuterium fractionation in two massive starless/early-stage cores C1-N and C1-S in Infrared Dark Cloud (IRDC) G028.37+00.07, first identified by Tan et al. (2013) with ALMA. Line emission from multiple transitions of $rm N_2H^+$ and $rm N_2D^+$ were observed with the ALMA, CARMA, SMA, JCMT, NRO 45m and IRAM 30m telescopes. By simultaneously fitting the spectra, we estimate the excitation conditions and deuterium fraction, $D_{rm frac}^{rm N_2H^+} equiv [rm N_2D^+]/[N_2H^+]$, with values of $D_{rm frac}^{rm N_2H^+} simeq 0.2$--$0.7$, several orders of magnitude above the cosmic [D]/[H] ratio. Additional observations of o-H$_2$D$^+$ are also presented that help constrain the ortho-to-para ratio of $rm H_2$, which is a key quantity affecting the degree of deuteration. We then present chemodynamical modeling of the two cores, exploring especially the implications for the collapse rate relative to free-fall, $alpha_{rm ff}$. In order to reach the high level of observed deuteration of $rm N_2H^+$, we find that the most likely evolutionary history of the cores involves collapse at a relatively slow rate, $lesssim1/10$th of free-fall.



قيم البحث

اقرأ أيضاً

72 - O. Sipila , P. Caselli , J. Harju 2019
We constructed two new models for deuterium and spin-state chemistry for the purpose of modeling the low-temperature environment prevailing in starless and pre-stellar cores. The fundamental difference between the two models is in the treatment of io n-molecule proton-donation reactions of the form $rm XH^+ + Y longrightarrow X + YH^+$, which are allowed to proceed either via full scrambling or via direct proton hop, i.e., disregarding proton exchange. The choice of the reaction mechanism affects both deuterium and spin-state chemistry, and in this work our main interest is on the effect on deuterated ammonia. We applied the new models to the starless core H-MM1, where several deuterated forms of ammonia have been observed. Our investigation slightly favors the proton hop mechanism over full scrambling because the ammonia D/H ratios are better fit by the former model, although neither model can reproduce the observed $rm NH_2D$ ortho-to-para ratio of 3 (the models predict a value of $sim$2). Extending the proton hop scenario to hydrogen atom abstraction reactions yields a good agreement for the spin-state abundance ratios, but greatly overestimates the deuterium fractions of ammonia. However, one can find a reasonably good agreement with the observations with this model by increasing the cosmic-ray ionization rate over the commonly-adopted value of $sim$$10^{-17},rm s^{-1}$. We also find that the deuterium fractions of several other species, such as $rm H_2CO$, $rm H_2O$, and $rm CH_3$, are sensitive to the adopted proton-donation reaction mechanism. Whether the full scrambling or proton hop mechanism dominates may be dependent on the reacting system, and new laboratory and theoretical studies for various reacting systems are needed to constrain chemical models.
115 - Jonathan C. Tan 2013
How do stars that are more massive than the Sun form, and thus how is the stellar initial mass function (IMF) established? Such intermediate- and high-mass stars may be born from relatively massive pre-stellar gas cores, which are more massive than t he thermal Jeans mass. The Turbulent Core Accretion model invokes such cores as being in approximate virial equilibrium and in approximate pressure equilibrium with their surrounding clump medium. Their internal pressure is provided by a combination of turbulence and magnetic fields. Alternatively, the Competitive Accretion model requires strongly sub-virial initial conditions that then lead to extensive fragmentation to the thermal Jeans scale, with intermediate- and high-mass stars later forming by competitive Bondi-Hoyle accretion. To test these models, we have identified four prime examples of massive (~100Msun) clumps from mid-infrared extinction mapping of infrared dark clouds (IRDCs). Fontani et al. found high deuteration fractions of N2H+ in these objects, which are consistent with them being starless. Here we present ALMA observations of these four clumps that probe the N2D+(3-2) line at 2.3 resolution. We find six N2D+ cores and determine their dynamical state. Their observed velocity dispersions and sizes are broadly consistent with the predictions of the Turbulent Core model of self-gravitating, magnetized (with Alfven Mach number m_A~1) and virialized cores that are bounded by the high pressures of their surrounding clumps. However, in the most massive cores, with masses up to ~60Msun, our results suggest that moderately enhanced magnetic fields (so that m_A~0.3) may be needed for the structures to be in virial and pressure equilibrium. Magnetically regulated core formation may thus be important in controlling the formation of massive cores, inhibiting their fragmentation, and thus helping to establish the stellar IMF.
High levels of deuterium fractionation of $rm N_2H^+$ (i.e., $rm D_{frac}^{N_2H^+} gtrsim 0.1$) are often observed in pre-stellar cores (PSCs) and detection of $rm N_2D^+$ is a promising method to identify elusive massive PSCs. However, the physical and chemical conditions required to reach such high levels of deuteration are still uncertain, as is the diagnostic utility of $rm N_2H^+$ and $rm N_2D^+$ observations of PSCs. We perform 3D magnetohydrodynamics simulations of a massive, turbulent, magnetised PSC, coupled with a sophisticated deuteration astrochemical network. Although the core has some magnetic/turbulent support, it collapses under gravity in about one freefall time, which marks the end of the simulations. Our fiducial model achieves relatively low $rm D_{frac}^{N_2H^+} sim 0.002$ during this time. We then investigate effects of initial ortho-para ratio of $rm H_2$ ($rm OPR^{H_2}$), temperature, cosmic ray (CR) ionization rate, CO and N-species depletion factors and prior PSC chemical evolution. We find that high CR ionization rates and high depletion factors allow the simulated $rm D_{frac}^{N_2H^+}$ and absolute abundances to match observational values within one freefall time. For $rm OPR^{H_2}$, while a lower initial value helps the growth of $rm D_{frac}^{N_2H^+}$, the spatial structure of deuteration is too widespread compared to observed systems. For an example model with elevated CR ionization rates and significant heavy element depletion, we then study the kinematic and dynamic properties of the core as traced by its $rm N_2D^+$ emission. The core, undergoing quite rapid collapse, exhibits disturbed kinematics in its average velocity map. Still, because of magnetic support, the core often appears kinematically sub-virial based on its $rm N_2D^+$ velocity dispersion.
We carry out an ALMA $rm N_2D^+$(3-2) and 1.3~mm continuum survey towards 32 high mass surface density regions in seven Infrared Dark Clouds with the aim of finding massive starless cores, which may be the initial conditions for the formation of mass ive stars. Cores showing strong $rm N_2D^+$(3-2) emission are expected to be highly deuterated and indicative of early, potentially pre-stellar stages of star formation. We also present maps of these regions in ancillary line tracers, including C$^{18}$O(2-1), DCN(3-2) and DCO$^+$(3-2). Over 100 $rm N_2D^+$ cores are identified with our newly developed core-finding algorithm based on connected structures in position-velocity space. The most massive core has $sim70:M_odot$ (potentially $sim170:M_odot$) and so may be representative of the initial conditions for massive star formation. The existence and dynamical properties of such cores constrain massive star formation theories. We measure the line widths and thus velocity dispersion of six of the cores with strongest $rm N_2D^+$(3-2) line emission, finding results that are generally consistent with virial equilibrium of pressure confined cores.
We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments ($lambda$ Orionis, Orion A, B, Galactic plane, and high latitudes) to identify dense cores on the verge of star formation for the study of the initial conditions of star formation. We observed these cores in eight molecular lines at 76-94 GHz using the Nobeyama 45-m telescope. We find that early-type molecules (e.g., CCS) have low detection rates and that late-type molecules (e.g., N$_2$H$^+$, c-C$_3$H$_2$) and deuterated molecules (e.g., N$_2$D$^+$, DNC) have high detection rates, suggesting that most of the cores are chemically evolved. The deuterium fraction (D/H) is found to decrease with increasing distance, indicating that it suffers from differential beam dilution between the D/H pair of lines for distant cores ($>$1 kpc). For $lambda$ Orionis, Orion A, and B located at similar distances, D/H is not significantly different, suggesting that there is no systematic difference in the observed chemical properties among these three regions. We identify at least eight high D/H cores in the Orion region and two at high latitudes, which are most likely to be close to the onset of star formation. There is no clear evidence of the evolutionary change in turbulence during the starless phase, suggesting that the dissipation of turbulence is not a major mechanism for the beginning of star formation as judged from observations with a beam size of 0.04 pc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا