ترغب بنشر مسار تعليمي؟ اضغط هنا

A Pan-STARRS1 study of the relationship between wide binarity and planet occurrence in the Kepler field

44   0   0.0 ( 0 )
 نشر من قبل Niall Deacon
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N.R. Deacon




اسأل ChatGPT حول البحث

The NASA Kepler mission has revolutionised time-domain astronomy and has massively expanded the number of known extrasolar planets. However, the effect of wide multiplicity on exoplanet occurrence has not been tested with this dataset. We present a sample of 401 wide multiple systems containing at least one Kepler target star. Our method uses Pan-STARRS1 and archival data to produce an accurate proper motion catalogue of the Kepler field. Combined with Pan-STARRS1 SED fits and archival proper motions for bright stars, we use a newly developed probabilistic algorithm to identify likely wide binary pairs which are not chance associations. As by-products of this we present stellar SED templates in the Pan-STARRS1 photometric system and

قيم البحث

اقرأ أيضاً

Pan-STARRS1 has carried out a set of distinct synoptic imaging sky surveys including the $3pi$ Steradian Survey and the Medium Deep Survey in 5 bands ($grizy_{P1}$). The mean 5$sigma$ point source limiting sensitivities in the stacked 3$pi$ Steradian Survey in $grizy_{P1}$ are (23.3, 23.2, 23.1, 22.3, 21.4) respectively. The upper bound on the systematic uncertainty in the photometric calibration across the sky is 7-12 millimag depending on the bandpass. The systematic uncertainty of the astrometric calibration using the Gaia frame comes from a comparison of the results with Gaia: the standard deviation of the mean and median residuals ($ Delta ra, Delta dec $) are (2.3, 1.7) milliarcsec, and (3.1, 4.8) milliarcsec respectively. The Pan-STARRS system and the design of the PS1 surveys are described and an overview of the resulting image and catalog data products and their basic characteristics are described together with a summary of important results. The images, reduced data products, and derived data products from the Pan-STARRS1 surveys are available to the community from the Mikulski Archive for Space Telescopes (MAST) at STScI.
We confirm and characterize the exoplanetary systems Kepler-445 and Kepler-446: two mid-M dwarf stars, each with multiple, small, short-period transiting planets. Kepler-445 is a metal-rich ([Fe/H]=+0.25 $pm$ 0.10) M4 dwarf with three transiting plan ets, and Kepler-446 is a metal-poor ([Fe/H]=-0.30 $pm$ 0.10) M4 dwarf also with three transiting planets. Kepler-445c is similar to GJ 1214b: both in planetary radius and the properties of the host star. The Kepler-446 system is similar to the Kepler-42 system: both are metal-poor with large galactic space velocities and three short-period, likely-rocky transiting planets that were initially assigned erroneously large planet-to-star radius ratios. We independently determined stellar parameters from spectroscopy and searched for and fitted the transit light curves for the planets, imposing a strict prior on stellar density in order to remove correlations between the fitted impact parameter and planet-to-star radius ratio for short-duration transits. Combining Kepler-445, Kepler-446 and Kepler-42, and isolating all mid-M dwarf stars observed by Kepler with the precision necessary to detect similar systems, we calculate that 21 $^{+7}_{-5}$ % of mid-M dwarf stars host compact multiples (multiple planets with periods of less than 10 days) for a wide range of metallicities. We suggest that the inferred planet masses for these systems support highly efficient accretion of protoplanetary disk metals by mid-M dwarf protoplanets.
We present the discovery of 61 wide (>5 arcsecond) separation, low-mass (stellar and substellar) companions to stars in the solar neighborhood identified from Pan-STARRS,1 (PS1) data and the spectral classification of 27 previously known companions. Our companions represent a selective subsample of promising candidates and span a range in spectral type of K7-L9 with the addition of one DA white dwarf. These were identified primarily from a dedicated common proper motion search around nearby stars, along with a few as serendipitous discoveries from our Pan-STARRS1 brown dwarf search. Our discoveries include 24 new L dwarf companions and one known L dwarf not previously identified as a companion. The primary stars around which we searched for companions come from a list of bright stars with well-measured parallaxes and large proper motions from the Hipparcos catalog (8583 stars, mostly A-K~dwarfs) and fainter stars from other proper motion catalogues (79170 stars, mostly M~dwarfs). We examine the likelihood that our companions are chance alignments between unrelated stars and conclude that this is unlikely for the majority of the objects that we have followed-up spectroscopically. We also examine the entire population of ultracool (>M7) dwarf companions and conclude that while some are loosely bound, most are unlikely to be disrupted over the course of $sim$10 Gyr. Our search increases the number of ultracool M dwarf companions wider than 300 AU by 88% and increases the number of L dwarf companions in the same separation range by 96%. Finally, we resolve our new L dwarf companion to HIP 6407 into a tight (0.13 arcsecond, 7.4 AU) L1+T3 binary, making the system a hierarchical triple. Our search for these key benchmarks against which brown dwarf and exoplanet atmosphere models are tested has yielded the largest number of discoveries to date.
We discuss the discovery and characterization of the circumbinary planet Kepler-38b. The stellar binary is single-lined, with a period of 18.8 days, and consists of a moderately evolved main-sequence star (M_A = 0.949 +/- 0.059 solar masses and R_A = 1.757 +/- 0.034 solar radii) paired with a low-mass star (M_B = 0.249 +/- 0.010 solar masses and R_B = 0.2724 +/- 0.0053 solar radii) in a mildly eccentric (e=0.103) orbit. A total of eight transits due to a circumbinary planet crossing the primary star were identified in the Kepler light curve (using Kepler Quarters 1 through 11), from which a planetary period of 105.595 +/- 0.053 days can be established. A photometric dynamical model fit to the radial velocity curve and Kepler light curve yields a planetary radius of 4.35 +/- 0.11 Earth radii, or 1.12 +/- 0.03 Neptune radii. Since the planet is not sufficiently massive to observably alter the orbit of the binary from Keplerian motion, we can only place an upper limit on the mass of the planet of 122 Earth masses (7.11 Neptune masses or 0.384 Jupiter masses) at 95% confidence. This upper limit should decrease as more Kepler data become available.
67 - F. Liu , D. Yong , M. Asplund 2015
Chemical abundance studies of the Sun and solar twins have demonstrated that the solar composition of refractory elements is depleted when compared to volatile elements, which could be due to the formation of terrestrial planets. In order to further examine this scenario, we conducted a line-by-line differential chemical abundance analysis of the terrestrial planet host Kepler-10 and fourteen of its stellar twins. Stellar parameters and elemental abundances of Kepler-10 and its stellar twins were obtained with very high precision using a strictly differential analysis of high quality CFHT, HET and Magellan spectra. When compared to the majority of thick disc twins, Kepler-10 shows a depletion in the refractory elements relative to the volatile elements, which could be due to the formation of terrestrial planets in the Kepler-10 system. The average abundance pattern corresponds to ~ 13 Earth masses, while the two known planets in Kepler-10 system have a combined ~ 20 Earth masses. For two of the eight thick disc twins, however, no depletion patterns are found. Although our results demonstrate that several factors (e.g., planet signature, stellar age, stellar birth location and Galactic chemical evolution) could lead to or affect abundance trends with condensation temperature, we find that the trends give further support for the planetary signature hypothesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا