ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel proposal for a low emittace muon beam using positron beam on target

74   0   0.0 ( 0 )
 نشر من قبل Mario Antonelli
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Muon beams are customarily obtained via $K/pi$ decays produced in proton interaction on target. In this paper we investigate the possibility to produce low emittance muon beams from electron-positron collisions at centre-of-mass energy just above the $mu^{+}mu^{-}$ production threshold with maximal beam energy asymmetry, corresponding to a positron beam of about 45 GeV interacting on electrons on target. We present the main features of this scheme with an outline of the possible applications.



قيم البحث

اقرأ أيضاً

The power of the proton beam of a high-power spallation neutron source generally ranges from 100 kW to several MW. The distribution of the power density of the beam on the target is critical for the stable operation of the high-power spallation targe t. This study proposes a beam monitoring method that involves restoring the image of a high-power proton beam spot on a target based on the principle of pinhole imaging by using the back-streaming of secondary neutrons from the spallation target. Fast and indirect imaging of the beam spot can be achieved at a distance of tens of meters from the target. The proposed method of beam monitoring can flexibly adjust the size of the pinhole and the measurement distance to control the intensity of flux of the secondary neutrons according to the demands of the detection system, which is far from the high-radiation target area. The results of simulations showed that the proposed method can be used to restore the beam spot of the incident proton by using the point response function and images of the secondary neutrons. Based on the target and the Back-n beamline in the CSNS, the effectiveness of this method has also been confirmed.
An energetic muon beam is an attractive key to unlock new physics beyond the Standard Model: the lepton flavor violation or the anomalous magnetic moment, and also is a competitive candidate for the expected neutrino factory. Lots of the muon scienti fic applications are limited by low flux cosmic-ray muons, low energy muon sources or extremely expensive muon accelerators. An prompt acceleration of the low-energy muon beam is found in the beam-driven plasma wakefield up to $mathrm{TV/m}$. The muon beam is accelerated from $275mathrm{MeV}$ to more than $10mathrm{GeV}$ within $22.5mathrm{ps}$. Choosing the injection time of the muon beam in a proper range, the longitudinal spatial distribution and the energy distribution of the accelerated muon beam are compressed. The efficiency of the energy transfer from the driven electron beam to the muon beam can reach $20%$. The prompt acceleration scheme is a promising avenue to bring the expected neutrino factory and the muon collider into reality and to catch new physics beyond the Standard Model.
111 - Mikhail Zobov 2010
In order to achieve luminosities significantly higher than in existing machines, future storage-ring based colliders will need to operate in novel parameter regimes combining ultra-low emittance, large Piwinski angle and high bunch charge; implementa tion of techniques such as a crab waist will add further challenges. Understanding the beam-beam interaction in these situations will be essential for the design of future very high luminosity colliders. Recent developments in modeling tools for studying beam-beam effects, capable of investigating the relevant regimes, will be discussed and examples, including tests with crab waist collisions in DAFNE, will be presented.
The design of a future multi-TeV muon collider needs new ideas to overcome the technological challenges related to muon production, cooling, accumulation and acceleration. In this paper a layout of a positron driven muon source known as the Low EMitt ance Muon Accelerator (LEMMA) concept is presented. The positron beam, stored in a ring with high energy acceptance and low emittance, is extracted and driven to a multi-target system, to produce muon pairs at threshold. This solution alleviates the issues related to the power deposited and the integrated Peak Energy Density Deposition (PEDD) on the targets. Muons produced in the multi-target system will then be accumulated before acceleration and injection in the collider. A multi-target line lattice has been designed to cope with the focusing of both the positron and muon beams. Studies on the number, material and thickness of the targets have been carried out. A general layout of the overall scheme and a description is presented, as well as plans for future R&D.
77 - J.S.T.Ng , P.Chen , H.Baldis 2001
The observation of plasma focusing of a 28.5 GeV positron beam is reported. The plasma was formed by ionizing a nitrogen jet only 3 mm thick. Simultaneous focusing in both transverse dimensions was observed with effective focusing strengths of order Tesla per micron. The minimum area of the beam spot was reduced by a factor of 2.0 +/- 0.3 by the plasma. The longitudinal beam envelope was measured and compared with numerical calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا