ترغب بنشر مسار تعليمي؟ اضغط هنا

Cyclic multiverses

105   0   0.0 ( 0 )
 نشر من قبل Mariusz Dabrowski P.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the idea of regularisation of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (non-singular bounce) regularised by varying gravitational constant $G$ despite the scale factor evolution is oscillating and having sharp turning points (singular bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea onto the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two parallel universes with their physical evolution (physical coupling constants $c(t)$ and $G(t)$) being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion -- the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying $G(t)$ is replaced by the dynamical Brans-Dicke field $phi(t)$ though these theories are slightly different.

قيم البحث

اقرأ أيضاً

Combining intervals of ekpyrotic (ultra-slow) contraction with a (non-singular) classical bounce naturally leads to a novel cyclic theory of the universe in which the Hubble parameter, energy density and temperature oscillate periodically, but the sc ale factor grows by an exponential factor from one cycle to the next. The resulting cosmology not only resolves the homogeneity, isotropy, flatness and monopole problems and generates a nearly scale invariant spectrum of density perturbations, but it also addresses a number of age-old cosmological issues that big bang inflationary cosmology does not. There may also be wider-ranging implications for fundamental physics, black holes and quantum measurement.
209 - James B. Hartle 2018
A quantum theory of the universe consists of a theory of its quantum dynamics and a theory of its quantum state The theory predicts quantum multiverses in the form of decoherent sets of alternative histories describing the evolution of the universes spacetime geometry and matter content. These consequences follow: (a) The universe generally exhibits different quantum multiverses at different levels and kinds of coarse graining. (b) Quantum multiverses are not a choice or an assumption but are consequences of the theory or not. (c) Quantum multiverses are generic for simple theories (d) Anthropic selection is automatic because observers are physical systems within the universe not somehow outside it. (e) Quantum multiverses can provide different mechanisms for the variation constants in effective theories (like the cosmological constant) enabling anthropic selection. (f) Different levels of coarse grained multiverses provide different routes to calculation as a consequence of decoherence. We support these conclusions by analyzing the quantum multiverses of a variety of quantum cosmological models aimed at the prediction of observable properties of our universe. In particular we show how the example of a multiverse consisting of a vast classical spacetime containing many pocket universes arises automatically as part of a quantum multiverse describing an eternally inflating false vacuum that decays by the quantum nucleation of true vacuum bubbles. In a FAQ we argue that the quantum multiverses of the universe are scientific, real, testable, falsifiable, and similar to those in other areas of science even if they are not directly observable on arbitrarily large scales.
We track the evolution of entropy and black holes in a cyclic universe that undergoes repeated intervals of expansion followed by slow contraction and a smooth (non-singular) bounce. In this kind of cyclic scenario, there is no big crunch and no chao tic mixmaster behavior. We explain why the entropy following each bounce is naturally partitioned into near-maximal entropy in the matter-radiation sector and near-minimal in the gravitational sector, satisfying the Weyl curvature conditions conjectured to be essential for a cosmology consistent with observations. As a result, this kind of cyclic universe can undergo an unbounded number of cycles in the past and/or the future.
130 - Shreya Banerjee 2016
We investigate the bounce and cyclicity realization in the framework of weakly broken galileon theories. We study bouncing and cyclic solutions at the background level, reconstructing the potential and the galileon functions that can give rise to a g iven scale factor, and presenting analytical expressions for the bounce requirements. We proceed to a detailed investigation of the perturbations, which after crossing the bouncing point give rise to various observables, such as the scalar and tensor spectral indices and the tensor-to-scalar ratio. Although the scenario at hand shares the disadvantage of all bouncing models, namely that it provides a large tensor-to-scalar ratio, introducing an additional light scalar significantly reduces it through the kinetic amplification of the isocurvature fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا