Using the idea of regularisation of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (non-singular bounce)
regularised by varying gravitational constant $G$ despite the scale factor evolution is oscillating and having sharp turning points (singular bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea onto the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two parallel universes with their physical evolution (physical coupling constants $c(t)$ and $G(t)$) being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion -- the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying $G(t)$ is replaced by the dynamical Brans-Dicke field $phi(t)$ though these theories are slightly different.
The Kantowski-Sachs cosmological model sourced by a Skyrme field and a cosmological constant is considered in the framework of General Relativity. Assuming a constant radial profile function for the hedgehog ansatz, the Skyrme contribution to Einstei
n equations is shown to be equivalent to an anisotropic fluid. Using dynamical system techniques, a qualitative analysis of the cosmological equations is presented. Physically interesting features of the model such as isotropization, bounce and recollapse are discussed.
We track the evolution of entropy and black holes in a cyclic universe that undergoes repeated intervals of expansion followed by slow contraction and a smooth (non-singular) bounce. In this kind of cyclic scenario, there is no big crunch and no chao
tic mixmaster behavior. We explain why the entropy following each bounce is naturally partitioned into near-maximal entropy in the matter-radiation sector and near-minimal in the gravitational sector, satisfying the Weyl curvature conditions conjectured to be essential for a cosmology consistent with observations. As a result, this kind of cyclic universe can undergo an unbounded number of cycles in the past and/or the future.
We investigate the bounce and cyclicity realization in the framework of weakly broken galileon theories. We study bouncing and cyclic solutions at the background level, reconstructing the potential and the galileon functions that can give rise to a g
iven scale factor, and presenting analytical expressions for the bounce requirements. We proceed to a detailed investigation of the perturbations, which after crossing the bouncing point give rise to various observables, such as the scalar and tensor spectral indices and the tensor-to-scalar ratio. Although the scenario at hand shares the disadvantage of all bouncing models, namely that it provides a large tensor-to-scalar ratio, introducing an additional light scalar significantly reduces it through the kinetic amplification of the isocurvature fluctuations.
Combining intervals of ekpyrotic (ultra-slow) contraction with a (non-singular) classical bounce naturally leads to a novel cyclic theory of the universe in which the Hubble parameter, energy density and temperature oscillate periodically, but the sc
ale factor grows by an exponential factor from one cycle to the next. The resulting cosmology not only resolves the homogeneity, isotropy, flatness and monopole problems and generates a nearly scale invariant spectrum of density perturbations, but it also addresses a number of age-old cosmological issues that big bang inflationary cosmology does not. There may also be wider-ranging implications for fundamental physics, black holes and quantum measurement.