ﻻ يوجد ملخص باللغة العربية
A search for double-beta decays of 136Xe to excited states of 136Ba has been performed with the first phase data set of the KamLAND-Zen experiment. The 0+1, 2+1 and 2+2 transitions of 0{ u}{beta}{beta} decay were evaluated in an exposure of 89.5kg-yr of 136Xe, while the same transitions of 2{ u}{beta}{beta} decay were evaluated in an exposure of 61.8kg-yr. No excess over background was found for all decay modes. The lower half-life limits of the 2+1 state transitions of 0{ u}{beta}{beta} and 2{ u}{beta}{beta} decay were improved to T(0{ u}, 0+ rightarrow 2+) > 2.6times10^25 yr and T(2{ u}, 0+ rightarrow 2+) > 4.6times10^23 yr (90% C.L.), respectively. We report on the first experimental lower half-life limits for the transitions to the 0+1 state of 136Xe for 0{ u}{beta}{beta} and 2{ u}{beta}{beta} decay. They are T (0{ u}, 0+ rightarrow 0+) > 2.4times10^25 yr and T(2{ u}, 0+ rightarrow 0+) > 8.3times10^23 yr (90% C.L.). The transitions to the 2+2 states are also evaluated for the first time to be T(0{ u}, 0+ rightarrow 2+) > 2.6times10^25 yr and T(2{ u}, 0+ rightarrow 2+) > 9.0times10^23 yr (90% C.L.). These results are compared to recent theoretical predictions.
The Gerda experiment designed to search for the neutrinoless double beta decay in 76Ge has successfully completed the first data collection. No signal excess is found, and a lower limit on the half life of the process is set, with T1/2 > 2.1x10^25 yr
Double-beta decay is a rare nuclear process in which two neutrons in the nucleus are converted to two protons with the emission of two electrons and two electron anti-neutrinos. We measured the half life of the two-neutrino double-beta decay of $^{15
The KamLAND-Zen 800 experiment is searching for the neutrinoless double-beta decay of $^{136}$Xe by using $^{136}$Xe-loaded liquid scintillator. The liquid scintillator is enclosed inside a balloon made of thin, transparent, low-radioactivity film th
The double beta decay of 100Mo to the 0^+_1 and 2^+_1 excited states of 100Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of 100Mo to the excited 0^+_1 state is measured
The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search for neutrinoless double beta decay (0$ ubetabeta$) of $^{100}$Mo with $sim$100 kg of $^{100}$Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and ligh