ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite temperature magnetism of FeRh compounds

58   0   0.0 ( 0 )
 نشر من قبل Sergiy Mankovsky
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The temperature dependent stability of the magnetic phases of FeRh were investigated by means of total energy calculations with magnetic disorder treated within the uncompensated disordered local moment (uDLM) approach. In addition, Monte Carlo simulations based on the extended Heisenberg model have been performed, using exchange coupling parameters obtained rom first principles. The crucial role and interplay of two factors in the metamagnetic transition in FeRh has been revealed, namely the dependence of the Fe-Fe exchange coupling parameters on the temperature-governed degree of magnetic disorder in the system and the stabilizing nature of the induced magnetic moment on Rh-sites. An important observation is the temperature dependence of these two competing factors.



قيم البحث

اقرأ أيضاً

Yttrium iron garnet is a complex ferrimagnetic insulator with 20 magnon modes which is used extensively in fundamental experimental studies of magnetisation dynamics. As a transition metal oxide with moderate gap (2.8 eV), yttrium iron garnet require s a careful treatment of electronic correlation. We have applied quasiparticle self-consistent GW to provide a fully ab initio description of the electronic structure and resulting magnetic properties, including the parameterisation of a Heisenberg model for magnetic exchange interactions. Subsequent spin dynamical modelling with quantum statistics extends our description to the magnon spectrum and thermodynamic properties such as the Curie temperature, finding favourable agreement with experimental measurements. This work provides a snapshot of the state-of-the art in modelling of complex magnetic insulators.
375 - I.V. Solovyev , N. Hamada , 2003
Using results of the band structure calculations in the local-spin-density approximation we demonstrate how the crystal distortions affect the magnetic structure of orthorhombically distorted perovskites leading to a non-collinear spin arrangement. O ur results suggest that the non-collinearity of the spin magnetic moments, being generally small in La$M$O$_3$ series with $M$=Cr-Fe, is large in SrRuO$_3$.
Temperature-dependent magnetic experiments like pump-probe measurements generated by a pulsed laser have become a crucial technique for switching the magnetization in the picosecond time scale. Apart from having practical implications on the magnetic storage technology, the research field of ultrafast magnetization poses also fundamental physical questions. To correctly describe the time evolution of the atomic magnetic moments under the influence of a temperature-dependent laser pulse, it remains crucial to know if the magnetic material under investigation has magnetic excitation spectrum that is more or less dependent on the magnetic configuration, e.g. as reflected by the temperature dependence of the exchange interactions. In this article, we demonstrate from first-principles theory that the magnetic excitation spectra in Co with fcc, bcc and hcp structures are nearly identical in a wide range of non-collinear magnetic configurations. This is a curious result of a balance between the size of the magnetic moments and the strength of the Heisenberg exchange interactions, that in themselves vary with configuration, but put together in an effective spin Hamiltonian results in a configuration independent effective model. We have used such a Hamiltonian, together with ab-initio calculated damping parameters, to investigate the magnon dispersion relationship as well as the ultrafast magnetisation dynamics of Co and Co-rich CoMn alloys.
The finite-temperature magnetic properties of Fe$_x$Pd$_{1-x}$ and Co$_x$Pt$_{1-x}$ alloys have been investigated. It is shown that the temperature-dependent magnetic behaviour of alloys, composed of originally magnetic and non-magnetic elements, can not be described properly unless the coupling between magnetic moments at magnetic atoms (Fe,Co) mediated through the interactions with induced magnetic moments of non-magnetic atoms (Pd,Pt) is included. A scheme for the calculation of the Curie temperature ($T_C$) for this type of systems is presented which is based on the extended Heisenberg Hamiltonian with the appropriate exchange parameters $J_{ij}$ obtained from {em ab-initio} electronic structure calculations. Within the present study the KKR Greens function method has been used to calculate the $J_{ij}$ parameters. A comparison of the obtained Curie temperatures for Fe$_x$Pd$_{1-x}$ and Co$_x$Pt$_{1-x}$ alloys with experimental data shows rather good agreement.
Mn_5Ge_3C_x films with x>0.5 were experimentally shown to exhibit a strongly enhanced Curie temperature T_C compared to Mn_5Ge_3. In this letter we present the results of our first principles calculations within Greens function approach, focusing on the effect of carbon doping on the electronic and magnetic properties of the Mn_5Ge_3. The calculated exchange coupling constants revealed an enhancement of the ferromagnetic Mn-Mn interactions mediated by carbon. The essentially increased T_C in Mn_5Ge_3C is well reproduced in our Monte Carlo simulations and together with the decrease of the total magnetisation is found to be predominantly of an electronic nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا